首页> 外文期刊>Image Processing, IEEE Transactions on >Feature and Region Selection for Visual Learning
【24h】

Feature and Region Selection for Visual Learning

机译:视觉学习的特征和区域选择

获取原文
获取原文并翻译 | 示例

摘要

Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.
机译:视觉学习问题,例如对象分类和动作识别,通常使用流行的词袋(BoWs)模型的扩展来解决。尽管BoW模型取得了巨大的成功,但尚不清楚BoW模型正在学习哪些视觉功能。图像或视频中的哪些区域用于区分类别?哪些是最有区别的视觉用语?回答这些问题是理解现有BoW模型和激发更好的视觉识别模型的基础。为了回答这些问题,本文提出了一种在视觉BoW模型中进行特征选择和区域选择的方法。这允许对视觉学习很重要的特征和区域进行中间可视化。主要思想是为特征或区域分配潜在权重,并使用分类器(例如支持向量机)的参数共同优化这些潜在变量。我们的方法有四个主要优点:1)我们的方法适用于非线性加性内核,例如流行和交集内核; 2)我们的方法能够以统一的方式处理图像中的区域和视频中的时空区域; 3)特征选择问题是凸的,并且两个问题都可以使用可伸缩的缩减梯度方法解决; 4)我们指出了与多种内核学习和多种实例学习方法的紧密联系。 PASCAL VOC 2007,MSR Action Dataset II和YouTube中的实验结果说明了我们方法的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号