首页> 外文期刊>Image Processing, IEEE Transactions on >Non-Rigid Point Set Registration by Preserving Global and Local Structures
【24h】

Non-Rigid Point Set Registration by Preserving Global and Local Structures

机译:通过保留全局和局部结构进行非刚性点集注册

获取原文
获取原文并翻译 | 示例

摘要

In previous work on point registration, the input point sets are often represented using Gaussian mixture models and the registration is then addressed through a probabilistic approach, which aims to exploit global relationships on the point sets. For non-rigid shapes, however, the local structures among neighboring points are also strong and stable and thus helpful in recovering the point correspondence. In this paper, we formulate point registration as the estimation of a mixture of densities, where local features, such as shape context, are used to assign the membership probabilities of the mixture model. This enables us to preserve both global and local structures during matching. The transformation between the two point sets is specified in a reproducing kernel Hilbert space and a sparse approximation is adopted to achieve a fast implementation. Extensive experiments on both synthesized and real data show the robustness of our approach under various types of distortions, such as deformation, noise, outliers, rotation, and occlusion. It greatly outperforms the state-of-the-art methods, especially when the data is badly degraded.
机译:在先前的点注册工作中,通常使用高斯混合模型来表示输入点集,然后通过概率方法解决注册问题,该方法旨在利用点集上的全局关系。但是,对于非刚性形状,相邻点之间的局部结构也很坚固且稳定,因此有助于恢复点的对应关系。在本文中,我们将点配准公式化为对密度混合的估计,其中使用局部特征(例如形状上下文)来指定混合模型的隶属度。这使我们能够在匹配过程中保留全局和局部结构。在再现核Hilbert空间中指定了两个点集之间的转换,并采用稀疏近似来实现快速实现。对合成数据和真实数据进行的大量实验表明,我们的方法在各种变形(例如变形,噪声,离群值,旋转和遮挡)下的鲁棒性。它大大优于最新方法,尤其是当数据严重降级时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号