首页> 外文期刊>IEEE Transactions on Image Processing >Background–Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering
【24h】

Background–Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering

机译:基于时空稀疏子空间聚类的背景-前景建模

获取原文
获取原文并翻译 | 示例

摘要

Background estimation and foreground segmentation are important steps in many high-level vision tasks. Many existing methods estimate background as a low-rank component and foreground as a sparse matrix without incorporating the structural information. Therefore, these algorithms exhibit degraded performance in the presence of dynamic backgrounds, photometric variations, jitter, shadows, and large occlusions. We observe that these backgrounds often span multiple manifolds. Therefore, constraints that ensure continuity on those manifolds will result in better background estimation. Hence, we propose to incorporate the spatial and temporal sparse subspace clustering into the robust principal component analysis (RPCA) framework. To that end, we compute a spatial and temporal graph for a given sequence using motion-aware correlation coefficient. The information captured by both graphs is utilized by estimating the proximity matrices using both the normalized Euclidean and geodesic distances. The low-rank component must be able to efficiently partition the spatiotemporal graphs using these Laplacian matrices. Embedded with the RPCA objective function, these Laplacian matrices constrain the background model to be spatially and temporally consistent, both on linear and nonlinear manifolds. The solution of the proposed objective function is computed by using the linearized alternating direction method with adaptive penalty optimization scheme. Experiments are performed on challenging sequences from five publicly available datasets and are compared with the 23 existing state-of-the-art methods. The results demonstrate excellent performance of the proposed algorithm for both the background estimation and foreground segmentation.
机译:背景估计和前景分割是许多高级视觉任务中的重要步骤。许多现有方法在不合并结构信息的情况下将背景估计为低秩分量,将前景估计为稀疏矩阵。因此,这些算法在存在动态背景,光度变化,抖动,阴影和大遮挡的情况下,性能会下降。我们观察到这些背景通常跨越多个流形。因此,确保这些歧管连续性的约束条件将导致更好的背景估计。因此,我们建议将时空稀疏子空间聚类合并到健壮的主成分分析(RPCA)框架中。为此,我们使用运动感知相关系数为给定序列计算空间和时间图。通过使用归一化的欧几里得距离和测地距离两者来估计邻近矩阵,从而利用两个图所捕获的信息。低阶组件必须能够使用这些Laplacian矩阵有效地划分时空图。这些嵌入了RPCA目标函数的拉普拉斯矩阵将背景模型在线性和非线性流形上约束为时空一致。提出的目标函数的求解是通过使用线性线性交替方向方法和自适应惩罚优化方案来计算的。对来自五个公开可用数据集的具有挑战性的序列进行了实验,并将其与23种现有的最新方法进行了比较。结果表明,该算法在背景估计和前景分割方面均具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号