首页> 外文期刊>IEEE Transactions on Image Processing >A Hybrid Data Association Framework for Robust Online Multi-Object Tracking
【24h】

A Hybrid Data Association Framework for Robust Online Multi-Object Tracking

机译:用于稳健的在线多对象跟踪的混合数据关联框架

获取原文
获取原文并翻译 | 示例

摘要

Global optimization algorithms have shown impressive performance in data-association-based multi-object tracking, but handling online data remains a difficult hurdle to overcome. In this paper, we present a hybrid data association framework with a min-cost multi-commodity network flow for robust online multi-object tracking. We build local target-specific models interleaved with global optimization of the optimal data association over multiple video frames. More specifically, in the min-cost multi-commodity network flow, the target-specific similarities are online learned to enforce the local consistency for reducing the complexity of the global data association. Meanwhile, the global data association taking multiple video frames into account alleviates irrecoverable errors caused by the local data association between adjacent frames. To ensure the efficiency of online tracking, we give an efficient near-optimal solution to the proposed min-cost multi-commodity flow problem, and provide the empirical proof of its sub-optimality. The comprehensive experiments on real data demonstrate the superior tracking performance of our approach in various challenging situations.
机译:全局优化算法在基于数据关联的多对象跟踪中显示出令人印象深刻的性能,但是处理在线数据仍然是一个难以克服的障碍。在本文中,我们提出了一种具有最小成本的多商品网络流的混合数据关联框架,用于健壮的在线多对象跟踪。我们建立了与多个视频帧上的最佳数据关联的全局优化交错的局部目标特定模型。更具体地说,在最小成本的多商品网络流中,可以在线学习目标特定的相似性,以增强本地一致性,从而降低全局数据关联的复杂性。同时,考虑多个视频帧的全局数据关联减轻了由相邻帧之间的本地数据关联引起的不可恢复的错误。为了确保在线跟踪的效率,我们对所提出的最小成本多商品流问题给出了一种有效的近似最优解,并提供了其次优性的经验证明。真实数据的综合实验证明了我们的方法在各种挑战性情况下的出色跟踪性能。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第12期|5667-5679|共13页
  • 作者

    Min Yang; Yuwei Wu; Yunde Jia;

  • 作者单位

    Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing, China;

    Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing, China;

    Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Trajectory; Optimization; Target tracking; Streaming media; Image edge detection; Detectors;

    机译:轨迹;优化;目标跟踪;流媒体;图像边缘检测;检测器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号