首页> 外文期刊>IEEE Transactions on Image Processing >Cross-Domain Shoe Retrieval With a Semantic Hierarchy of Attribute Classification Network
【24h】

Cross-Domain Shoe Retrieval With a Semantic Hierarchy of Attribute Classification Network

机译:属性分类网络语义层次的跨域鞋检索

获取原文
获取原文并翻译 | 示例

摘要

Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the semantic hierarchy of attribute convolutional neural network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe data set composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.
机译:跨域的鞋子图像检索是一个具有挑战性的问题,因为由于视点和比例的变化,来自街道域的查询照片(日常生活场景)和在线域中的参考照片(在线商店图像)具有明显的视觉差异。 -遮挡和杂乱的背景。提出了具有三级特征表示的属性卷积神经网络语义层次,用于判别鞋子特征和有效检索。 SHOE-CNN具有新设计的损失功能,可以系统地合并视觉效果更近的语义属性,以防止具有明显视觉差异的鞋子图像相互混淆;从图像,区域和零件级别提取的特征可以有效地匹配跨不同领域的鞋子图像。我们收集由14341个街道域和12652个具有细粒度属性的相应在线域图像组成的大规模鞋类数据集,以训练我们的网络并评估我们的系统。与具有预训练的CNN功能的解决方案相比,前20名的检索准确性显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号