首页> 外文期刊>IEEE Transactions on Image Processing >LLE Score: A New Filter-Based Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its Application to Image Recognition
【24h】

LLE Score: A New Filter-Based Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its Application to Image Recognition

机译:LLE得分:一种基于滤波器的基于非线性流形嵌入的无监督特征选择新方法及其在图像识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

The task of feature selection is to find the most representative features from the original high-dimensional data. Because of the absence of the information of class labels, selecting the appropriate features in unsupervised learning scenarios is much harder than that in supervised scenarios. In this paper, we investigate the potential of locally linear embedding (LLE), which is a popular manifold learning method, in feature selection task. It is straightforward to apply the idea of LLE to the graph-preserving feature selection framework. However, we find that this straightforward application suffers from some problems. For example, it fails when the elements in the feature are all equal; it does not enjoy the property of scaling invariance and cannot capture the change of the graph efficiently. To solve these problems, we propose a new filter-based feature selection method based on LLE in this paper, which is named as LLE score. The proposed criterion measures the difference between the local structure of each feature and that of the original data. Our experiments of classification task on two face image data sets, an object image data set, and a handwriting digits data set show that LLE score outperforms state-of-the-art methods, including data variance, Laplacian score, and sparsity score.
机译:特征选择的任务是从原始高维数据中找到最具代表性的特征。由于缺少类标签的信息,因此在无监督的学习场景中选择合适的功能比在有监督的场景中进行选择要困难得多。在本文中,我们研究了局部线性嵌入(LLE)的潜力,这是一种流行的流形学习方法,用于特征选择任务。将LLE的思想应用到图保留特征选择框架是很简单的。但是,我们发现这种简单的应用程序存在一些问题。例如,当要素中的元素全部相等时,它会失败;它不具有缩放不变性的特性,并且不能有效地捕获图形的变化。为了解决这些问题,本文提出了一种新的基于LLE的基于滤波器的特征选择方法,称为LLE评分。提出的标准测量每个特征的局部结构与原始数据的局部结构之间的差异。我们在两个面部图像数据集,一个对象图像数据集和一个手写数字数据集上进行分类任务的实验表明,LLE得分优于最新方法,包括数据差异,拉普拉斯得分和稀疏性得分。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第11期|5257-5269|共13页
  • 作者单位

    School of Automation, Northwestern Polytechnical University, Xi’an, China;

    State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China;

    School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing, China;

    School of Computing and Communications, Lancaster University, Lancaster, U.K.;

    School of Automation, Northwestern Polytechnical University, Xi’an, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature extraction; Laplace equations; Correlation; Manifolds; Learning systems; Algorithm design and analysis; Face;

    机译:特征提取;拉普拉斯方程;相关性;流形;学习系统;算法设计与分析;人脸;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号