首页> 外文期刊>IEEE Transactions on Image Processing >Example-Based Image Colorization Using Locality Consistent Sparse Representation
【24h】

Example-Based Image Colorization Using Locality Consistent Sparse Representation

机译:使用局部一致的稀疏表示的基于示例的图像着色

获取原文
获取原文并翻译 | 示例

摘要

Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.
机译:图像着色的目的是从给定的灰度图像中生成自然的彩色图像,这仍然是一个难题。在本文中,我们提出了一种新的基于实例的图像着色方法,该方法利用了新的局部一致稀疏表示。给定一个参考彩色图像,我们的方法通过稀疏追踪自动为目标灰度图像着色。为了提高效率和鲁棒性,我们的方法在超像素级别上运行。我们为每个超像素提取低级强度特征,中级纹理特征和高级语义特征,然后将其连接起来以形成其描述符。来自参考图像的所有超像素的特征向量的集合构成了字典。我们将目标超像素的着色公式化为基于字典的稀疏重建问题。受到观察的启发,具有相似空间位置和/或特征表示的超像素很可能与参考图像的空间接近区域相匹配,我们进一步在能量公式中引入了局部性促进正则化项,从而显着改善了匹配一致性和后续的着色结果。基于来自主要参考超像素的色度信息对目标超像素进行着色。最后,为了在保持清晰度的同时进一步提高相干性,我们在目标灰度图像的指导下为色度通道开发了一种新的边缘保留滤镜。据我们所知,这是从单个参考图像进行稀疏追踪图像着色的第一项工作。实验结果表明,通过用户研究,无论是在视觉上还是在定量上,我们的着色方法都优于最新方法。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第11期|5188-5202|共15页
  • 作者单位

    School of Mathematics and Information Sciences, Nanchang Hangkong University, Nanchang, China;

    School of Mathematics and Information Sciences, Nanchang Hangkong University, Nanchang, China;

    School of Data and Computer Science, National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou, China;

    School of Data and Computer Science, National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou, China;

    School of Computer Science and Informatics, Cardiff University, Cardiff, U.K.;

    School of Computer Science and Informatics, Cardiff University, Cardiff, U.K.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image color analysis; Image edge detection; Gray-scale; Feature extraction; Color; Dictionaries; Optimization;

    机译:图像色彩分析;图像边缘检测;灰度;特征提取;颜色;词典;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号