首页> 外文OA文献 >Example-based image colorization using locality consistent sparse representation
【2h】

Example-based image colorization using locality consistent sparse representation

机译:使用局部一致稀疏表示的基于示例的图像着色

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

—Image colorization aims to produce a natural looking color image from a given grayscale image, which remains a challenging problem. In this paper, we propose a novel examplebased image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target grayscale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target grayscale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms state-ofthe-art methods, both visually and quantitatively using a user study
机译:-图像着色旨在从给定的灰度图像中生成自然的彩色图像,这仍然是一个具有挑战性的问题。在本文中,我们提出了一种新的基于实例的图像着色方法,该方法利用了一种新的局部一致稀疏表示。给定一个参考彩色图像,我们的方法通过稀疏追踪自动为目标灰度图像着色。为了提高效率和鲁棒性,我们的方法在超像素级别上运行。我们为每个超像素提取低级强度特征,中级纹理特征和高级语义特征,然后将其串联起来以形成其描述符。来自参考图像的所有超像素的特征向量的集合构成了字典。我们将目标超像素的着色公式化为基于字典的稀疏重建问题。受到观察的启发,具有相似空间位置和/或特征表示的超像素可能会匹配参考图像的空间接近区域,因此我们进一步在能量公式中引入了局部性促进正则化项,从而显着改善了匹配一致性和后续的着色结果。基于来自主要参考超像素的色度信息对目标超像素进行着色。最后,为了在保持清晰度的同时进一步提高相干性,我们在目标灰度图像的指导下开发了一种用于色度通道的新型边缘保留滤镜。据我们所知,这是从单个参考图像进行稀疏追踪图像着色的第一项工作。实验结果表明,通过用户研究,我们的着色方法在视觉上和定量上都优于最新方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号