首页> 外文期刊>IEEE Transactions on Image Processing >Nonparametric Joint Shape and Feature Priors for Image Segmentation
【24h】

Nonparametric Joint Shape and Feature Priors for Image Segmentation

机译:用于图像分割的非参数联合形状和特征先验

获取原文
获取原文并翻译 | 示例

摘要

In many image segmentation problems involving limited and low-quality data, employing statistical prior information about the shapes of the objects to be segmented can significantly improve the segmentation result. However, defining probability densities in the space of shapes is an open and challenging problem, especially if the object to be segmented comes from a shape density involving multiple modes (classes). Existing techniques in the literature estimate the underlying shape distribution by extending Parzen density estimator to the space of shapes. In these methods, the evolving curve may converge to a shape from a wrong mode of the posterior density when the observed intensities provide very little information about the object boundaries. In such scenarios, employing both shape- and class-dependent discriminative feature priors can aid the segmentation process. Such features may involve, e.g., intensity-based, textural, or geometric information about the objects to be segmented. In this paper, we propose a segmentation algorithm that uses nonparametric joint shape and feature priors constructed by Parzen density estimation. We incorporate the learned joint shape and feature prior distribution into a maximum a posteriori estimation framework for segmentation. The resulting optimization problem is solved using active contours. We present experimental results on a variety of synthetic and real data sets from several fields involving multimodal shape densities. Experimental results demonstrate the potential of the proposed method.
机译:在许多涉及有限和低质量数据的图像分割问题中,采用有关要分割的对象形状的统计先验信息可以显着改善分割结果。然而,在形状空间中定义概率密度是一个开放且具有挑战性的问题,尤其是如果要分割的对象来自涉及多个模式(类)的形状密度时。文献中的现有技术通过将Parzen密度估计器扩展到形状空间来估计基本形状分布。在这些方法中,当观察到的强度提供的关于对象边界的信息非常少时,演化曲线可能会从后密度的错误模式收敛为形状。在这种情况下,同时使用形状和类别相关的区分特征先验可以帮助分割过程。这样的特征可以包括例如关于要分割的对象的基于强度的,纹理或几何信息。在本文中,我们提出了一种分割算法,该算法使用通过Parzen密度估计构造的非参数关节形状和特征先验。我们将学习到的关节形状和特征先验分布合并到最大的后验估计框架中进行分割。使用活动轮廓可以解决由此产生的优化问题。我们在涉及多峰形状密度的几个领域的各种合成和真实数据集上给出了实验结果。实验结果证明了该方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号