首页> 外文期刊>IEEE Transactions on Image Processing >Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks
【24h】

Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks

机译:使用两阶段任务导向的深度神经网络从有限的医学影像数据中检测解剖地标

获取原文
获取原文并翻译 | 示例

摘要

One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simultaneously in real time, using limited training data. Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.
机译:基于深度神经网络的解剖界标检测的主要挑战之一是医学成像数据用于网络学习的可用性有限。为了解决这个问题,我们提出了一种两阶段的,面向任务的深度学习方法,可以使用有限的训练数据实时实时检测大规模的解剖学界标。具体来说,我们的方法由两个深度卷积神经网络(CNN)组成,每个神经网络都专注于一项特定任务。具体而言,为了缓解训练数据有限的问题,在第一阶段,我们提出了一个基于CNN的回归模型,该模型使用数百万个图像斑块作为输入,旨在学习局部图像斑块和目标解剖学界标之间的内在联系。为了进一步建模图像补丁之间的相关性,在第二阶段,我们开发了另一个CNN模型,其中包括:a)一个完全卷积的网络,该网络与第一阶段使用的CNN共享相同的体系结构和网络权重,并且b)其他一些层共同预测多个解剖标志的坐标。重要的是,我们的方法可以实时联合检测大规模(例如数千个)地标。我们进行了各种实验,从700个受试者的3D T1加权磁共振图像中检测出1200个脑界标,并从73个受试者的3D计算机断层扫描图像中检测了7个前列腺界标。实验结果表明,我们的方法在解剖界标检测中在准确性和效率上均有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号