首页> 外文期刊>Image Processing, IEEE Transactions on >Robust Object Tracking With Discrete Graph-Based Multiple Experts
【24h】

Robust Object Tracking With Discrete Graph-Based Multiple Experts

机译:借助基于离散图的多个专家进行可靠的对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Variations of target appearances due to illumination changes, heavy occlusions, and target deformations are the major factors for tracking drift. In this paper, we show that the tracking drift can be effectively corrected by exploiting the relationship between the current tracker and its historical tracker snapshots. Here, a multi-expert framework is established by the current tracker and its historical trained tracker snapshots. The proposed scheme is formulated into a unified discrete graph optimization framework, whose nodes are modeled by the hypotheses of the multiple experts. Furthermore, an exact solution of the discrete graph exists giving the object state estimation at each time step. With the unary and binary compatibility graph scores defined properly, the proposed framework corrects the tracker drift via selecting the best expert hypothesis, which implicitly analyzes the recent performance of the multi-expert by only evaluating graph scores at the current frame. Three base trackers are integrated into the proposed framework to validate its effectiveness. We first integrate the online SVM on a budget algorithm into the framework with significant improvement. Then, the regression correlation filters with hand-crafted features and deep convolutional neural network features are introduced, respectively, to further boost the tracking performance. The proposed three trackers are extensively evaluated on three data sets: TB-50, TB-100, and VOT2015. The experimental results demonstrate the excellent performance of the proposed approaches against the state-of-the-art methods.
机译:由于照明变化,重度遮挡和目标变形导致的目标外观变化是跟踪漂移的主要因素。在本文中,我们表明可以通过利用当前跟踪器及其历史跟踪器快照之间的关系来有效地校正跟踪漂移。在这里,由当前跟踪器及其受过训练的跟踪器快照建立了一个多专家框架。该方案被构造成一个统一的离散图优化框架,该框架的节点由多个专家的假设进行建模。此外,存在离散图的精确解,从而给出了每个时间步的对象状态估计。通过正确定义一元和二进制兼容性图得分,提出的框架通过选择最佳专家假设来校正跟踪器漂移,该假设仅通过评估当前帧的图得分来隐式分析多专家的近期表现。将三个基本跟踪器集成到建议的框架中以验证其有效性。我们首先将基于预算算法的在线SVM集成到框架中,并进行了重大改进。然后,分别引入具有手工特征和深度卷积神经网络特征的回归相关滤波器,以进一步提高跟踪性能。在三个数据集上对拟议的三个跟踪器进行了广泛评估:TB-50,TB-100和VOT2015。实验结果证明了所提出的方法相对于最新方法的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号