首页> 外文期刊>IEEE Transactions on Image Processing >Fast 2D Convolutions and Cross-Correlations Using Scalable Architectures
【24h】

Fast 2D Convolutions and Cross-Correlations Using Scalable Architectures

机译:使用可扩展架构的快速2D卷积和互相关

获取原文
获取原文并翻译 | 示例

摘要

The manuscript describes fast and scalable architectures and associated algorithms for computing convolutions and cross-correlations. The basic idea is to map 2D convolutions and cross-correlations to a collection of 1D convolutions and cross-correlations in the transform domain. This is accomplished through the use of the discrete periodic radon transform for general kernels and the use of singular value decomposition -LU decompositions for low-rank kernels. The approach uses scalable architectures that can be fitted into modern FPGA and Zynq-SOC devices. Based on different types of available resources, for P×P blocks, 2D convolutions and cross-correlations can be computed in just O(P) clock cycles up to O(P2) clock cycles. Thus, there is a trade-off between performance and required numbers and types of resources. We provide implementations of the proposed architectures using modern programmable devices (Virtex-7 and Zynq-SOC). Based on the amounts and types of required resources, we show that the proposed approaches significantly outperform current methods.
机译:该手稿描述了用于计算卷积和互相关的快速且可伸缩的体系结构和相关算法。基本思想是将2D卷积和互相关映射到变换域中的1D卷积和互相关的集合。这是通过对常规内核使用离散周期radon变换以及对低级内核使用奇异值分解-LU分解来实现的。该方法使用可扩展架构,该架构可安装在现代FPGA和Zynq-SOC器件中。基于不同类型的可用资源,对于P×P块,可以仅在O(P)个时钟周期到O(P2)个时钟周期内计算2D卷积和互相关。因此,需要在性能与所需数量和资源类型之间进行权衡。我们提供使用现代可编程设备(Virtex-7和Zynq-SOC)的拟议架构的实现。基于所需资源的数量和类型,我们表明所提出的方法明显优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号