首页> 外文期刊>IEEE Transactions on Image Processing >Band Selection for Nonlinear Unmixing of Hyperspectral Images as a Maximal Clique Problem
【24h】

Band Selection for Nonlinear Unmixing of Hyperspectral Images as a Maximal Clique Problem

机译:高光谱图像非线性解混的带选择作为最大集团问题

获取原文
获取原文并翻译 | 示例

摘要

Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. Such methods, however, usually require the inversion of matrices of sizes equal to the number of spectral bands. Reducing the computational load of these methods remains a challenge in large-scale applications. This paper proposes a centralized band selection (BS) method for supervised unmixing in the reproducing kernel Hilbert space. It is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the selected bands in the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem, i.e., searching for the biggest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method.
机译:当场景中发生的混合类型过于复杂或未知时,将基于核的非线性混合模型用于取消混合高光谱图像的光谱信息。但是,这样的方法通常需要将尺寸等于谱带数量的矩阵求逆。在大规模应用中,减少这些方法的计算量仍然是一个挑战。提出了一种用于再现核希尔伯特空间中有监督解混的集中频带选择(BS)方法。它基于相干性标准,该标准设置了在解混合模型中表征所选频段的基础内核函数之间相关性所允许的最大值。我们表明,提出的BS方法等效于解决最大集团问题,即在图中搜索最大的完整子图。此外,我们设计了一种策略,用于针对线性独立碱基使用相干范围选择相干阈值和高斯内核带宽。仿真结果说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号