首页> 外文期刊>Image Processing, IEEE Transactions on >Robust Multi-Exposure Image Fusion: A Structural Patch Decomposition Approach
【24h】

Robust Multi-Exposure Image Fusion: A Structural Patch Decomposition Approach

机译:鲁棒的多重曝光图像融合:一种结构斑块分解方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a simple yet effective structural patch decomposition approach for multi-exposure image fusion (MEF) that is robust to ghosting effect. We decompose an image patch into three conceptually independent components: signal strength, signal structure, and mean intensity. Upon fusing these three components separately, we reconstruct a desired patch and place it back into the fused image. This novel patch decomposition approach benefits MEF in many aspects. First, as opposed to most pixel-wise MEF methods, the proposed algorithm does not require post-processing steps to improve visual quality or to reduce spatial artifacts. Second, it handles RGB color channels jointly, and thus produces fused images with more vivid color appearance. Third and most importantly, the direction of the signal structure component in the patch vector space provides ideal information for ghost removal. It allows us to reliably and efficiently reject inconsistent object motions with respect to a chosen reference image without performing computationally expensive motion estimation. We compare the proposed algorithm with 12 MEF methods on 21 static scenes and 12 deghosting schemes on 19 dynamic scenes (with camera and object motion). Extensive experimental results demonstrate that the proposed algorithm not only outperforms previous MEF algorithms on static scenes but also consistently produces high quality fused images with little ghosting artifacts for dynamic scenes. Moreover, it maintains a lower computational cost compared with the state-of-the-art deghosting schemes.11The MATLAB code of the proposed algorithm will be made available online. Preliminary results of Section III-A [1] were presented at the IEEE International Conference on Image Processing, Canada, 2015.
机译:我们提出了一种简单而有效的针对多重曝光图像融合(MEF)的结构补丁分解方法,该方法对幻影效果具有鲁棒性。我们将图像块分解为三个概念上独立的组件:信号强度,信号结构和平均强度。将这三个分量分别融合后,我们将重建所需的补丁并将其放回融合的图像中。这种新颖的补丁分解方法在许多方面都有益于MEF。首先,与大多数像素级MEF方法相反,所提出的算法不需要后处理步骤即可提高视觉质量或减少空间伪像。其次,它可以共同处理RGB颜色通道,从而生成具有更鲜艳颜色外观的融合图像。第三也是最重要的一点是,斑块矢量空间中信号结构分量的方向为重影去除提供了理想的信息。它使我们能够可靠,高效地拒绝相对于所选参考图像的不一致的对象运动,而无需执行计算量大的运动估计。我们将提出的算法与针对21个静态场景的12种MEF方法和针对19种动态场景(具有摄像机和物体运动)的12种去鬼影方案进行比较。大量的实验结果表明,所提出的算法不仅在静态场景上优于以前的MEF算法,而且能够始终如一地产生高质量的融合图像,而动态场景中几乎没有重影伪影。此外,与最新的反虚幻主机相比,它保持了较低的计算成本。11该算法的MATLAB代码将在线提供。第III-A节[1]的初步结果已在2015年加拿大加拿大IEEE图像处理国际会议上发表。

著录项

  • 来源
    《Image Processing, IEEE Transactions on》 |2017年第5期|2519-2532|共14页
  • 作者单位

    Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada;

    Department of Computing, The Hong Kong Polytechnic University, Hong Kong;

    Department of Computing, The Hong Kong Polytechnic University, Hong Kong;

    Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada;

    Institute for Information and System Sciences and Ministry of Education Key Laboratory of Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an, China;

    Department of Computing, The Hong Kong Polytechnic University, Hong Kong;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Heuristic algorithms; Image color analysis; Cameras; Dynamics; Robustness; Motion estimation; Dynamic range;

    机译:启发式算法图像色彩分析相机动态鲁棒性运动估计动态范围;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号