首页> 外文期刊>IEEE Transactions on Image Processing >Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images
【24h】

Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images

机译:随机访问内存:高分辨率航空遥感图像中目标检测的新范例

获取原文
获取原文并翻译 | 示例

摘要

We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm “random access memories (RAM).” In this paradigm, “Memories” can be interpreted as any model distribution learned from training data and “random access” means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set “LEarning, VIsion and Remote sensing laboratory (LEVIR)”, which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.
机译:我们提出了一种新的范式,用于在小目标先验条件下的高分辨率航空遥感影像中进行目标检测。以前的遥感目标检测方法将检测框架化为学习检测模型+推断类别标签和边界框坐标。取而代之的是,我们从贝叶斯(Bayesian)的观点出发,在推理阶段对检测模型进行自适应更新,以最大化其后验,后者由训练和观察确定。我们称这种范例为“随机存取存储器(RAM)”。在这种范式中,“记忆”可以解释为从训练数据中学到的任何模型分布,“随机访问”是指在检测阶段访问内存并随机调整模型,以更好地适应测试数据的任何未见分布。通过利用一些最新的检测技术,例如深度卷积神经网络和多尺度锚点,在公共遥感目标检测数据集上的实验结果表明我们的方法优于其他几种现有方法。我们还引入了一个新的数据集“学习,视觉和遥感实验室(LEVIR)”,它比该领域的其他数据集大一个数量级。 LEVIR由大量Google Earth图像组成,其中包含超过22k图像和10k独立标记的目标。 RAM使我们的基线检测器的精度有了显着提升(平均平均精度提高了1%〜4%),并且具有可接受的计算开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号