首页> 外文期刊>IEEE Transactions on Image Processing >Co-Saliency Detection for RGBD Images Based on Multi-Constraint Feature Matching and Cross Label Propagation
【24h】

Co-Saliency Detection for RGBD Images Based on Multi-Constraint Feature Matching and Cross Label Propagation

机译:基于多约束特征匹配和交叉标签传播的RGBD图像共凸度检测

获取原文
获取原文并翻译 | 示例

摘要

Co-saliency detection aims at extracting the common salient regions from an image group containing two or more relevant images. It is a newly emerging topic in computer vision community. Different from the most existing co-saliency methods focusing on RGB images, this paper proposes a novel co-saliency detection model for RGBD images, which utilizes the depth information to enhance identification of co-saliency. First, the intra saliency map for each image is generated by the single image saliency model, while the inter saliency map is calculated based on the multi-constraint feature matching, which represents the constraint relationship among multiple images. Then, the optimization scheme, namely cross label propagation, is used to refine the intra and inter saliency maps in a cross way. Finally, all the original and optimized saliency maps are integrated to generate the final co-saliency result. The proposed method introduces the depth information and multi-constraint feature matching to improve the performance of co-saliency detection. Moreover, the proposed method can effectively exploit any existing single image saliency model to work well in co-saliency scenarios. Experiments on two RGBD co-saliency datasets demonstrate the effectiveness of our proposed model.
机译:共显着性检测旨在从包含两个或更多相关图像的图像组中提取公共显着区域。它是计算机视觉社区中一个新兴的话题。与目前大多数针对RGB图像的共显着性方法不同,本文提出了一种新颖的RGBD图像共显着性检测模型,该模型利用深度信息来增强对共显着性的识别。首先,通过单图像显着性模型生成每个图像的内部显着性图,同时基于表示多个图像之间的约束关系的多约束特征匹配来计算内部显着性图。然后,使用优化方案,即交叉标签传播,以交叉方式细化内部和内部显着性图。最后,将所有原始的和优化的显着性地图进行整合,以生成最终的共同显着性结果。提出的方法引入了深度信息和多约束特征匹配,以提高共显着性检测的性能。此外,所提出的方法可以有效地利用任何现有的单图像显着性模型,以在共同显着性场景中很好地工作。在两个RGBD共凸显数据集上进行的实验证明了我们提出的模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号