首页> 外文期刊>IEEE Transactions on Image Processing >Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition
【24h】

Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

机译:多任务卷积神经网络用于姿态不变的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

This paper explores multi-task learning (MTL) for face recognition. First, we propose a multi-task convolutional neural network (CNN) for face recognition, where identity classification is the main task and pose, illumination, and expression (PIE) estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weights to each side task, which solves the crucial problem of balancing between different tasks in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses in a joint framework. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the PIE variations from the learnt identity features. Extensive experiments on the entire multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in multi-PIE for face recognition. Our approach is also applicable to in-the-wild data sets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.
机译:本文探讨了用于人脸识别的多任务学习(MTL)。首先,我们提出了一种用于人脸识别的多任务卷积神经网络(CNN),其中身份分类是主要任务,而姿势,光照和表情(PIE)估计是辅助任务。其次,我们开发了一种动态加权方案来自动将损失权重分配给每个副任务,从而解决了MTL中不同任务之间平衡的关键问题。第三,我们通过组合不同的姿势以学习姿势特定的身份特征,同时在联合框架中的所有姿势之间,提出了姿势指导的多任务CNN。最后但并非最不重要的一点是,我们提出了一种基于能量的权重分析方法,以探索基于CNN的MTL的工作原理。我们观察到辅助任务可以作为正则化,以从学习的身份特征中解开PIE变异。在整个多PIE数据集上的大量实验证明了该方法的有效性。据我们所知,这是使用多PIE中的所有数据进行人脸识别的第一项工作。我们的方法还适用于姿态不变的人脸识别的野外数据集,并且与LFW,CFP和IJB-A数据集相比,具有与现有技术相当或更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号