首页> 外文期刊>IEEE Transactions on Image Processing >Embedding Perspective Analysis Into Multi-Column Convolutional Neural Network for Crowd Counting
【24h】

Embedding Perspective Analysis Into Multi-Column Convolutional Neural Network for Crowd Counting

机译:将透视分析嵌入到人群计数中多列卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

The crowd counting is challenging for deep networks due to several factors. For instance, the networks can not efficiently analyze the perspective information of arbitrary scenes, and they are naturally inefficient to handle the scale variations. In this work, we deliver a simple yet efficient multi-column network, which integrates the perspective analysis method with the counting network. The proposed method explicitly excavates the perspective information and drives the counting network to analyze the scenes. More concretely, we explore the perspective information from the estimated density maps and quantify the perspective space into several separate scenes. We then embed the perspective analysis into the multi-column framework with a recurrent connection. Therefore, the proposed network matches various scales with the different receptive fields efficiently. Secondly, we share the parameters of the branches with various receptive fields. This strategy drives the convolutional kernels to be sensitive to the instances with various scales. Furthermore, to improve the evaluation accuracy of the column with a large receptive field, we propose a transform dilated convolution. The transform dilated convolution breaks the fixed sampling structure of the deep network. Moreover, it needs no extra parameters and training, and the offsets are constrained in a local region, which is designed for the congested scenes. The proposed method achieves state-of-the-art performance on five datasets (ShanghaiTech, UCF CC 50, WorldEXPO'10, UCSD, and TRANCOS).
机译:由于几个因素,人群计数对深度网络充满挑战。例如,网络无法有效地分析任意场景的透视信息,并且它们自然地效率低效地处理比例变化。在这项工作中,我们提供了一个简单而有效的多列网络,该网络与计数网络集成了透视分析方法。所提出的方法明确地挖掘了透视信息并驱动计数网络来分析场景。更具体地,我们从估计的密度映射中探讨了透视信息,并将透视空间量化为几个单独的场景。然后,我们将透视分析嵌入到多列框架中,通过反复连接。因此,所提出的网络有效地与不同的接收领域与各种缩放相匹配。其次,我们与各种接受领域共享分支的参数。此策略驱动卷积内核对具有各种尺度的实例敏感。此外,为了提高具有大接收领域的柱的评价精度,我们提出了一种转化扩张的卷积。变换扩张的卷积破坏了深网络的固定采样结构。此外,它不需要额外的参数和培训,并且偏移量被限制在本地区域,该区域被设计为拥挤的场景。该方法在五个数据集中实现了最先进的性能(上海学,UCF CC 50,WorldExpo'10,UCSD和Trancos)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号