首页> 外文期刊>IEEE Transactions on Image Processing >Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations
【24h】

Blind Deconvolution for Poissonian Blurred Image With Total Variation and L0-Norm Gradient Regularizations

机译:虎眼模糊图像的盲解卷积,总变异和L0-NOM梯度规范化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a regularized blind deconvolution method for restoring Poissonian blurred image. The problem is formulated by utilizing the L 0 -norm of image gradients and total variation (TV) to regularize the latent image and point spread function (PSF), respectively, and combining them with the negative logarithmic Poisson log-likelihood. To solve the problem, we propose an approach which combines the methods of variable splitting and Lagrange multiplier to convert the original problem into three sub-problems, and then design an alternating minimization algorithm which incorporates the estimation of PSF and latent image as well as the updation of Lagrange multiplier into account. We also design a non-blind deconvolution method based on TV regularization to further improve the quality of the restored image. Experimental results on both synthetic and real-world Poissonian blurred images show that the proposed method can achieve restored images of very high quality, which is competitive with or even better than some state of the art methods.
机译:本文提出了一种正规化的盲卷积法,用于恢复Poissonian模糊图像。通过利用l 0 -norm的图像梯度和总变化(电视)分别为潜像和点扩展功能(PSF),并将它们与负对数泊松日志似然组成。为了解决问题,我们提出了一种方法,该方法将可变分割和拉格朗日乘数的方法组合到三个子问题中将原始问题转换为三个子问题,然后设计一种交替的最小化算法,该算法包含对PSF和潜像的估计以及潜像算法以及Lagrange乘法器的更新考虑。我们还设计了一种基于电视正常化的非盲折叠方法,以进一步提高恢复图像的质量。综合性和现实世界泊松模型的实验结果表明,该方法可以实现非常高质量的恢复图像,这与甚至比某些现有技术的竞争甚至更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号