首页> 外文期刊>IEEE Transactions on Image Processing >Asymmetric Supervised Consistent and Specific Hashing for Cross-Modal Retrieval
【24h】

Asymmetric Supervised Consistent and Specific Hashing for Cross-Modal Retrieval

机译:非对称监督一致和特定的横向检索

获取原文
获取原文并翻译 | 示例

摘要

Hashing-based techniques have provided attractive solutions to cross-modal similarity search when addressing vast quantities of multimedia data. However, existing cross-modal hashing (CMH) methods face two critical limitations: 1) there is no previous work that simultaneously exploits the consistent or modality-specific information of multi-modal data; 2) the discriminative capabilities of pairwise similarity is usually neglected due to the computational cost and storage overhead. Moreover, to tackle the discrete constraints, relaxation-based strategy is typically adopted to relax the discrete problem to the continuous one, which severely suffers from large quantization errors and leads to sub-optimal solutions. To overcome the above limitations, in this article, we present a novel supervised CMH method, namely Asymmetric Supervised Consistent and Specific Hashing (ASCSH). Specifically, we explicitly decompose the mapping matrices into the consistent and modality-specific ones to sufficiently exploit the intrinsic correlation between different modalities. Meanwhile, a novel discrete asymmetric framework is proposed to fully explore the supervised information, in which the pairwise similarity and semantic labels are jointly formulated to guide the hash code learning process. Unlike existing asymmetric methods, the discrete asymmetric structure developed is capable of solving the binary constraint problem discretely and efficiently without any relaxation. To validate the effectiveness of the proposed approach, extensive experiments on three widely used datasets are conducted and encouraging results demonstrate the superiority of ASCSH over other state-of-the-art CMH methods.
机译:基于散列的技术已经为跨越模态相似性搜索提供了有吸引力的解决方案,在寻址大量多媒体数据时。但是,现有的跨模态散列(CMH)方法面临两个关键限制:1)没有以前的工作,同时利用多模态数据的一致或模态的特定信息; 2)由于计算成本和存储开销,成对相似性的判别能力通常被忽略。此外,为了解决离散的约束,通常采用基于弛豫的策略来放宽对连续的一个离散问题,这严重遭受大量量化误差并导致次优溶液。为了克服上述限制,在本文中,我们提出了一种新颖的监督CMH方法,即非对称监督一致和特定的哈希(ASCSH)。具体地,我们明确地将映射矩阵分解成一致的和模态特定的矩阵,以充分利用不同方式之间的内在相关性。同时,提出了一种新颖的不对称框架来充分探索监督信息,其中共同相似性和语义标签是共同制定的,以指导哈希码学习过程。与现有的不对称方法不同,开发的离散非对称结构能够在没有任何松弛的情况下离心和有效地解决二元约束问题。为了验证所提出的方法的有效性,对三种广泛使用的数据集进行了广泛的实验,并令人鼓舞的结果表明ASCSH的优越性在于其他最先进的CMH方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号