首页> 外文期刊>IEEE Transactions on Image Processing >Online Learning-Based Multi-Stage Complexity Control for Live Video Coding
【24h】

Online Learning-Based Multi-Stage Complexity Control for Live Video Coding

机译:基于在线学习的实时视频编码的多级复杂性控制

获取原文
获取原文并翻译 | 示例

摘要

High Efficiency Video Coding (HEVC) can significantly improve the compression efficiency in comparison with the preceding H.264/Advanced Video Coding (AVC) but at the cost of extremely high computational complexity. Hence, it is challenging to realize live video applications on low-delay and power-constrained devices, such as the smart mobile devices. In this article, we propose an online learning-based multi-stage complexity control method for live video coding. The proposed method consists of three stages: multi-accuracy Coding Unit (CU) decision, multi-stage complexity allocation, and Coding Tree Unit (CTU) level complexity control. Consequently, the encoding complexity can be accurately controlled to correspond with the computing capability of the video-capable device by replacing the traditional brute-force search with the proposed algorithm, which properly determines the optimal CU size. Specifically, the multi-accuracy CU decision model is obtained by an online learning approach to accommodate the different characteristics of input videos. In addition, multi-stage complexity allocation is implemented to reasonably allocate the complexity budgets to each coding level. In order to achieve a good trade-off between complexity control and rate distortion (RD) performance, the CTU-level complexity control is proposed to select the optimal accuracy of the CU decision model. The experimental results show that the proposed algorithm can accurately control the coding complexity from 100% to 40%. Furthermore, the proposed algorithm outperforms the state-of-the-art algorithms in terms of both accuracy of complexity control and RD performance.
机译:与前一H.264 /高级视频编码(AVC)相比,高效视频编码(HEVC)可以显着提高压缩效率,但具有极高的计算复杂性的成本。因此,在低延迟和功率受限设备上实现实时视频应用是具有挑战性的,例如智能移动设备。在本文中,我们提出了一种基于在线学习的多级复杂性控制方法,用于实时视频编码。该方法由三个阶段组成:多精度编码单元(CU)决策,多级复杂性分配和编码树单元(CTU)级复杂性控制。因此,可以通过用所提出的算法替换传统的布鲁力搜索来准确地控制编码复杂性以对应于视频能力的设备的计算能力,该算法正确地确定最佳Cu大小。具体地,通过在线学习方法获得多精度Cu决策模型以适应输入视频的不同特征。此外,实现了多级复杂性分配,以合理地将复杂性预算分配给每个编码级别。为了在复杂性控制和速率失真(RD)性能之间实现良好的权衡,提出了CTU级复杂性控制来选择Cu决策模型的最佳精度。实验结果表明,该算法可以准确地控制100%至40%的编码复杂度。此外,所提出的算法在复杂性控制和RD性能的准确性方面优于最先进的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号