首页> 外文期刊>IEEE Transactions on Image Processing >A Joint Relationship Aware Neural Network for Single-Image 3D Human Pose Estimation
【24h】

A Joint Relationship Aware Neural Network for Single-Image 3D Human Pose Estimation

机译:单图像3D人类姿态估计的联合关系意识到神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the task of 3D human pose estimation from a single RGB image, which is challenging without depth information. Recently many deep learning methods are proposed and achieve great improvements due to their strong representation learning. However, most existing methods ignore the relationship between joint features. In this paper, a joint relationship aware neural network is proposed to take both global and local joint relationship into consideration. First, a whole feature block representing all human body joints is extracted by a convolutional neural network. A Dual Attention Module (DAM) is applied on the whole feature block to generate attention weights. By exploiting the attention module, the global relationship between the whole joints is encoded. Second, the weighted whole feature block is divided into some individual joint features. To capture salient joint feature, the individual joint features are refined by individual DAMs. Finally, a joint angle prediction constraint is proposed to consider local joint relationship. Quantitative and qualitative experiments on 3D human pose estimation benchmarks demonstrate the effectiveness of the proposed method.
机译:本文研究了3D人类姿势从单个RGB图像的任务,这在没有深度信息的情况下具有挑战性。最近,由于他们的强烈代表学习,拟议了许多深入学习方法,实现了巨大的改善。但是,大多数现有方法都忽略了联合特征之间的关系。本文提出了一个联合关系意识到神经网络,以考虑全球和地方联合关系。首先,由卷积神经网络提取代表所有人体关节的整个特征块。双重注意模块(DAM)应用于整个特征块以产生注意力。通过利用注意模块,整个关节之间的全局关系被编码。其次,加权整个特征块分为一些单独的关节特征。为了捕获突出的关节功能,各个接合特征由个别水坝精制。最后,提出了一个接合角预测约束来考虑局部联合关系。 3D人类姿势估计基准测试的定量和定性实验证明了该方法的有效性。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2020年第2020期|4747-4758|共12页
  • 作者单位

    Chinese Acad Sci Xian Inst Opt & Precis Mech Key Lab Spectral Imaging Technol CAS Xian 710119 Peoples R China;

    Chinese Acad Sci Xian Inst Opt & Precis Mech Key Lab Spectral Imaging Technol CAS Xian 710119 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Xian Inst Opt & Precis Mech Key Lab Spectral Imaging Technol CAS Xian 710119 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D human pose estimation; joint relationship; dual attention module;

    机译:3D人类姿势估计;联合关系;双重关注模块;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号