首页> 外文期刊>IEEE Transactions on Image Processing >Fusion of Heterogeneous Adversarial Networks for Single Image Dehazing
【24h】

Fusion of Heterogeneous Adversarial Networks for Single Image Dehazing

机译:单映像脱水的异质对抗网络融合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel image dehazing method. Typical deep learning models for dehazing are trained on paired synthetic indoor dataset. Therefore, these models may be effective for indoor image dehazing but less so for outdoor images. We propose a heterogeneous Generative Adversarial Networks (GAN) based method composed of a cycle-consistent Generative Adversarial Networks (CycleGAN) for producing haze-clear images and a conditional Generative Adversarial Networks (cGAN) for preserving textural details. We introduce a novel loss function in the training of the fused network to minimize GAN generated artifacts, to recover fine details, and to preserve color components. These networks are fused via a convolutional neural network (CNN) to generate dehazed image. Extensive experiments demonstrate that the proposed method significantly outperforms the state-of-the-art methods on both synthetic and real-world hazy images.
机译:在本文中,我们提出了一种新颖的图像脱水方法。典型的Dehazing的深层学习模型在配对的合成室内数据集上培训。因此,这些模型可能对室内图像脱水有效,但户外图像较少。我们提出了一种由基于异构的生成的对抗网络(GaN)的方法,其由循环一致的生成对抗网络(Cycleangan)组成,用于产生雾化图像和条件生成的对抗网络(Cgan),用于保留纹理细节。我们在融合网络训练中引入了一种新的损失功能,以最大限度地减少GaN生成的伪影,以恢复精细细节,并保留颜色组件。这些网络通过卷积神经网络(CNN)融合以产生除虫图像。广泛的实验表明,所提出的方法显着优于合成和现实世界朦胧图像的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号