首页> 外文期刊>IEEE Transactions on Image Processing >Person Search by Separated Modeling and A Mask-Guided Two-Stream CNN Model
【24h】

Person Search by Separated Modeling and A Mask-Guided Two-Stream CNN Model

机译:通过分离建模和掩模引导的两流CNN模型进行搜索

获取原文
获取原文并翻译 | 示例

摘要

In this work, we tackle the problem of person search, which is a challenging task consisted of pedestrian detection and person re-identification (re-ID). Instead of sharing representations in a single joint model, we find that separating detector and re-ID feature extraction yields better performance. In order to extract more representative features for each identity, we segment out the foreground person from the original image patch. We propose a simple yet effective re-ID method, which models foreground person and original image patches individually, and obtains enriched representations from two separate CNN streams. We also propose a Confidence Weighted Stream Attention method which further re-adjusts the relative importance of the two streams by incorporating the detection confidence. Furthermore, we simplify the whole pipeline by incorporating semantic segmentation into the re-ID network, which is trained by bounding boxes as weakly-annotated masks and identification labels simultaneously. From the experiments on two standard person search benchmarks i.e. CUHK-SYSU and PRW, we achieve mAP of 83.3% and 32.8% respectively, surpassing the state of the art by a large margin. The extensive ablation study and model inspection further justifies our motivation.
机译:在这项工作中,我们解决人员搜索问题,这是一个具有挑战性的任务,由行人检测和人员重新识别(RE-ID)组成。除了在单个联合模型中共享表示,我们发现分离检测器和重新ID特征提取产生更好的性能。为了为每个身份提取更多代表性的特征,我们将前景人从原始图像修补程序中分割出来。我们提出了一种简单而有效的RE-ID方法,其单独模拟前景人和原始图像修补程序,并从两个单独的CNN流中获得丰富的表示。我们还提出了一种置信度加权流注意方法,其通过结合检测信心来进一步重新调整两条流的相对重要性。此外,我们通过将语义分割结合到RE-ID网络中来简化整个管道,这通过将框架训练为弱注释的掩码和识别标签。从实验到两个标准人员搜索基准,即Cuhk-sysu和Prw,我们分别达到83.3%和32.8%的地图,超越了巨额利润率。广泛的消融研究和模型检查进一步证明了我们的动机。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2020年第2020期|4669-4682|共14页
  • 作者单位

    Nanjing Univ Sci & Technol PCA Lab Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

    Nanjing Univ Sci & Technol PCA Lab Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China|Sci & Technol Parallel & Distributed Proc Lab PDL Changsha 410073 Peoples R China;

    Univ Sydney SenseTime Comp Vis Res Grp Sydney NSW 2006 Australia;

    Nanjing Univ Sci & Technol PCA Lab Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

    Tencent Holdings Ltd Shanghai 200233 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature extraction; Streaming media; Task analysis; Image segmentation; Training; Detectors; Search problems; Person search; pedestrian detection; person re-identification;

    机译:特征提取;流媒体;任务分析;图像分割;培训;探测器;搜索问题;人搜索;人们搜索;人们重新识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号