首页> 外文期刊>IEEE Transactions on Image Processing >Soft-Edge Assisted Network for Single Image Super-Resolution
【24h】

Soft-Edge Assisted Network for Single Image Super-Resolution

机译:单图像超分辨率软边辅助网络

获取原文
获取原文并翻译 | 示例

摘要

The task of single image super-resolution (SISR) is a highly ill-posed inverse problem since reconstructing the high-frequency details from a low-resolution image is challenging. Most previous CNN-based super-resolution (SR) methods tend to directly learn the mapping from the low-resolution image to the high-resolution image through some complex convolutional neural networks. However, the method of blindly increasing the depth of the network is not the best choice because the performance improvement of such methods is marginal but the computational cost is huge. A more efficient method is to integrate the image prior knowledge into the model to assist the image reconstruction. Indeed, the soft-edge has been widely applied in many computer vision tasks as the role of an important image feature. In this paper, we propose a Soft-edge assisted Network (SeaNet) to reconstruct the high-quality SR image with the help of image soft-edge. The proposed SeaNet consists of three sub-nets: a rough image reconstruction network (RIRN), a soft-edge reconstruction network (Edge-Net), and an image refinement network (IRN). The complete reconstruction process consists of two stages. In Stage-I, the rough SR feature maps and the SR soft-edge are reconstructed by the RIRN and Edge-Net, respectively. In Stage-II, the outputs of the previous stages are fused and then fed to the IRN for high-quality SR image reconstruction. Extensive experiments show that our SeaNet converges rapidly and achieves excellent performance under the assistance of image soft-edge. The code is available at https://gitlab.com/junchenglee/seanet-pytorch.
机译:单个图像超分辨率(SISR)的任务是一种高度不良逆问题,因为从低分辨率图像重建高频细节是具有挑战性的。最先前的基于CNN的超分辨率(SR)方法倾向于通过一些复杂的卷积神经网络直接从低分辨率图像到高分辨率图像的映射。然而,盲目增加网络深度的方法不是最佳选择,因为这些方法的性能改善是边缘的,但​​计算成本是巨大的。一种更有效的方法是将图像先前知识集成到模型中以帮助图像重建。实际上,软边已经广泛应用于许多计算机视觉任务,作为重要图像特征的作用。在本文中,我们提出了一种软边辅助网络(SeAreet)以在图像软边缘的帮助下重建高质量的SR图像。所提出的SeAnet由三个子网组成:粗略图像重建网络(RIRN),软边重建网络(边缘网)和图像细化网络(IRN)。完整的重建过程由两个阶段组成。在舞台I中,Rirn和Edge-Net分别重建粗糙的SR特征映射和SR软边。在第II阶段,先前阶段的输出融合,然后送入IRN以进行高质量的SR图像重建。广泛的实验表明,我们的Seaet迅速收敛并在图像软边的辅助下实现了出色的性能。代码可在https://gitlab.com/junchenglee/seanet-pytorch获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号