首页> 外文期刊>IEEE Transactions on Image Processing >A Recurrent Neural Network for Particle Tracking in Microscopy Images Using Future Information, Track Hypotheses, and Multiple Detections
【24h】

A Recurrent Neural Network for Particle Tracking in Microscopy Images Using Future Information, Track Hypotheses, and Multiple Detections

机译:使用未来信息,跟踪假设和多次检测的显微镜图像中粒子跟踪的经常性神经网络

获取原文
获取原文并翻译 | 示例

摘要

Automatic tracking of particles in time-lapse fluorescence microscopy images is essential for quantifying the dynamic behavior of subcellular structures and virus structures. We introduce a novel particle tracking approach based on a deep recurrent neural network architecture that exploits past and future information in both forward and backward direction. Assignment probabilities are determined jointly across multiple detections, and the probability of missing detections is computed. In addition, existence probabilities are determined by the network to handle track initiation and termination. For correspondence finding, track hypotheses are propagated to future time points so that information at later time points can be used to resolve ambiguities. A handcrafted similarity measure and handcrafted motion features are not necessary. Manually labeled data is not required for network training. We evaluated the performance of our approach using image data of the Particle Tracking Challenge as well as real fluorescence microscopy image sequences of virus structures. It turned out that the proposed approach outperforms previous methods.
机译:在延时荧光显微镜图像中自动跟踪粒子对于量化亚细胞结构和病毒结构的动态行为至关重要。我们基于深度复发性神经网络架构介绍一种新的粒子跟踪方法,该网络架构利用前向和向后方向的过去和未来信息。分配概率在多个检测中共同确定,计算缺失检测的概率。此外,存在概率由网络确定以处理轨道启动和终止。对于通信发现,跟踪假设传播到未来的时间点,以便在稍后的时间点处的信息可用于解决歧义。不需要手工相似度量和手动运动功能。网络培训不需要手动标记数据。我们使用粒子跟踪挑战的图像数据以及病毒结构的真实荧光显微镜图像序列来评估我们的方法的性能。事实证明,所提出的方法优于以前的方法。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2020年第2020期|3681-3694|共14页
  • 作者单位

    Heidelberg Univ Biomed Comp Vis Grp BioQuant IPMB DKFZ Heidelberg D-69120 Heidelberg Germany;

    Univ Heidelberg Hosp Dept Infect Dis Integrat Virol D-69120 Heidelberg Germany|European Mol Biol Lab Cell Biol & Biophys Unit D-69120 Heidelberg Germany;

    Univ Heidelberg Hosp Dept Infect Dis Mol Virol D-69120 Heidelberg Germany|German Ctr Infect Res DZIF Heidelberg Partner Site Heidelberg Germany;

    Univ Heidelberg Hosp Dept Infect Dis Virol D-69120 Heidelberg Germany;

    Univ Heidelberg Hosp Dept Infect Dis Integrat Virol D-69120 Heidelberg Germany;

    Univ Heidelberg Hosp Dept Infect Dis Mol Virol D-69120 Heidelberg Germany|German Ctr Infect Res DZIF Heidelberg Partner Site Heidelberg Germany;

    Heidelberg Univ Biomed Comp Vis Grp BioQuant IPMB DKFZ Heidelberg D-69120 Heidelberg Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomedical imaging; microscopy images; particle tracking; deep learning;

    机译:生物医学成像;显微镜图像;粒子跟踪;深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号