首页> 外文期刊>IEEE Transactions on Image Processing >Illumination Invariant Hyperspectral Image Unmixing Based on a Digital Surface Model
【24h】

Illumination Invariant Hyperspectral Image Unmixing Based on a Digital Surface Model

机译:基于数字表面模型的照明不变高光谱图像解密

获取原文
获取原文并翻译 | 示例

摘要

Although many spectral unmixing models have been developed to address spectral variability caused by variable incident illuminations, the mechanism of the spectral variability is still unclear. This paper proposes an unmixing model, named illumination invariant spectral unmixing (IISU). IISU makes the first attempt to use the radiance hyperspectral data and a LiDAR-derived digital surface model (DSM) in order to physically explain variable illuminations and shadows in the unmixing framework. Incident angles, sky factors, visibility from the sun derived from the LiDAR-derived DSM support the explicit explanation of endmember variability in the unmixing process from radiance perspective. The proposed model was efficiently solved by a straightforward optimization procedure. The unmixing results showed that the other state-of-the-art unmixing models did not work well especially in the shaded pixels. On the other hand, the proposed model estimated more accurate abundances and shadow compensated reflectance than the existing models.
机译:尽管已经开发出许多光谱解密模型来解决可变事件照明引起的频谱可变性,但频谱变异性的机制仍不清楚。本文提出了一个解密的模型,名为Illumination Funiant Spectral Unmixing(Iisu)。 IISU使得第一次尝试使用Radiance Hyperspectral数据和LIDAR导出的数字表面模型(DSM),以便物理地解释解密框架中的变量照明和阴影。入射角,天空因素,来自LIDAR导出的DSM的太阳的可见性支持从Radiance Perspective中明确解释未混合过程中的终止过程中的变异性。所提出的模型通过简单的优化程序有效地解决。突发的结果表明,其他最先进的解混模型尤其在阴影像素中不起作用。另一方面,所提出的模型估计比现有型号更准确的丰富丰富和阴影补偿反射率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号