首页> 外文期刊>IEEE Transactions on Image Processing >A Biological Vision Inspired Framework for Image Enhancement in Poor Visibility Conditions
【24h】

A Biological Vision Inspired Framework for Image Enhancement in Poor Visibility Conditions

机译:一种生物视觉激发了可见性条件差的图像增强框架框架

获取原文
获取原文并翻译 | 示例

摘要

Image enhancement is an important pre-processing step for many computer vision applications especially regarding the scenes in poor visibility conditions. In this work, we develop a unified two-pathway model inspired by the biological vision, especially the early visual mechanisms, which contributes to image enhancement tasks including low dynamic range (LDR) image enhancement and high dynamic range (HDR) image tone mapping. Firstly, the input image is separated and sent into two visual pathways: structure-pathway and detail-pathway, corresponding to the M- and P-pathway in the early visual system, which code the low- and high-frequency visual information, respectively. In the structure-pathway, an extended biological normalization model is used to integrate the global and local luminance adaptation, which can handle the visual scenes with varying illuminations. On the other hand, the detail enhancement and local noise suppression are achieved in the detail-pathway based on local energy weighting. Finally, the outputs of structure-and detail-pathway are integrated to achieve the low-light image enhancement. In addition, the proposed model can also be used for tone mapping of HDR images with some fine-tuning steps. Extensive experiments on three datasets (two LDR image datasets and one HDR scene dataset) show that the proposed model can handle the visual enhancement tasks mentioned above efficiently and outperform the related state-of-the-art methods.
机译:图像增强是许多计算机视觉应用的重要预处理步骤,特别是关于可见度差的场景。在这项工作中,我们开发了一个由生物视觉的统一的双途径模型,特别是早期视觉机制,这有助于图像增强任务,包括低动态范围(LDR)图像增强和高动态范围(HDR)图像音调映射。首先,将输入图像分开并发送到两个视觉路径:结构 - 途径和细节路线,对应于早期视觉系统中的M和P途径,分别代码低频和高频视觉信息。在结构途径中,扩展的生物归一化模型用于集成全局和局部亮度适应,这可以处理具有不同照明的视觉场景。另一方面,基于局部能量加权,在细节路径中实现了细节增强和局部噪声抑制。最后,集成了结构和细节路径的输出以实现低光图像增强。此外,所提出的模型还可用于HDR图像的音调映射,具有一些微调步骤。在三个数据集(两个LDR图像数据集和一个HDR场景数据集)上进行了广泛的实验表明,所提出的模型可以有效地处理上面提到的视觉增强任务,并且优于相关的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号