首页> 外文期刊>IEEE Transactions on Image Processing >Exploiting Related and Unrelated Tasks for Hierarchical Metric Learning and Image Classification
【24h】

Exploiting Related and Unrelated Tasks for Hierarchical Metric Learning and Image Classification

机译:利用相关和不相关的任务,用于分层度量学习和图像分类

获取原文
获取原文并翻译 | 示例

摘要

In multi-task learning, multiple interrelated tasks are jointly learned to achieve better performance. In many cases, if we can identify which tasks are related, we can also clearly identify which tasks are unrelated. In the past, most researchers emphasized exploiting correlations among interrelated tasks while completely ignoring the unrelated tasks that may provide valuable prior knowledge for multi-task learning. In this paper, a new approach is developed to hierarchically learn a tree of multi-task metrics by leveraging prior knowledge about both the related tasks and unrelated tasks. First, a visual tree is constructed to hierarchically organize large numbers of image categories in a coarse-to-fine fashion. Over the visual tree, a multitask metric classifier is learned for each node by exploiting both the related and unrelated tasks, where the learning tasks for training the classifiers for the sibling child nodes under the same parent node are treated as the interrelated tasks, and the others are treated as the unrelated tasks. In addition, the node-specific metric for the parent node is propagated to its sibling child nodes to control inter-level error propagation. Our experimental results demonstrate that our hierarchical metric learning algorithm achieves better results than other state-of-the-art algorithms.
机译:在多任务学习中,共同学会了多个相互关联的任务以实现更好的性能。在许多情况下,如果我们可以识别哪些任务相关,我们也可以清楚地确定哪些任务是无关的。在过去,大多数研究人员强调了相互关联的任务之间的相关性,同时完全忽略了可能为多任务学习提供有价值的先验知识的无关任务。在本文中,通过利用相关任务和不相关任务的先验知识来开发一种新方法来分级学习多任务指标树。首先,构建视觉树以以粗略的方式分级地组织大量图像类别。在Visual树上,通过利用相关和不相关的任务来为每个节点学习多任务度量分类器,其中用于训练与在同一父节点下的兄弟儿童节点的分类器的学习任务被视为相互关联的任务,以及其他人被视为不相关的任务。另外,父节点的节点特定度量被传播到其兄弟子节点以控制级别的错误传播。我们的实验结果表明,我们的分层度量学习算法比其他最先进的算法实现了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号