首页> 外文期刊>IEEE Transactions on Image Processing >Learning Rich Part Hierarchies With Progressive Attention Networks for Fine-Grained Image Recognition
【24h】

Learning Rich Part Hierarchies With Progressive Attention Networks for Fine-Grained Image Recognition

机译:学习丰富的部分层次结构,具有渐进式关注网络,用于细粒度的图像识别

获取原文
获取原文并翻译 | 示例

摘要

We investigate the localization of subtle yet discriminative parts for fine-grained image recognition. Based on the observation that such parts typically exist within a hierarchical structure (e.g., from a coarse-scale "head" to a fine-scale "eye" when recognizing bird species), we propose a novel progressive-attention convolutional neural network (PA-CNN) to progressively localize parts at multiple scales. The PA-CNN localizes parts in two steps, where a part proposal network (PPN) generates multiple local attention maps, and a part rectification network (PRN) learns part-specific features from each proposal and provides the PPN with refined part locations. This coupling of the PPN and PRN allows them to be optimized in a mutually reinforcing manner, leading to improved pinpointing of fine-grained parts. Moreover, the convolutional parameters for a PPN at a finer scale can be inherited from the PRN at a coarser scale, enabling a rich part hierarchy (e.g., eye and beak in a bird's head) to be learned in a stacked fashion. Case studies show that PA-CNN can precisely identify parts without using bounding box/part annotations. In addition, quantitative evaluations demonstrate that PA-CNN yields state-of-the-art performance in three challenging fine-grained recognition tasks. i.e., CUB-2000-2011, FGVC-Aircraft, and Stanford Cars.
机译:我们调查微妙的图像识别的微妙且辨别部位的定位。基于观察说明在识别鸟类时,这些部件通常存在于分层结构内(例如,从粗糙度“眼睛”到细尺“眼睛”),我们提出了一种新颖的渐进式卷积神经网络(PA -cnn)以多个尺度逐步本地化零件。 PA-CNN定位了两个步骤的部分,其中部分提案网络(PPN)生成多个本地注意图,并且零件整流网络(PRN)从每个提议中学习特定于部分特征,并提供PPN具有精制部分位置的PPN。 PPN和PRN的这种偶联允许它们以相互增强的方式优化,从而改善细粒部分的精确定位。此外,以更精细的刻度为PPN的卷积参数可以以粗略的规模从PRN继承,使得富有的部分层次结构(例如,鸟头的眼睛和喙)以堆叠的方式学习。案例研究表明,PA-CNN可以精确地识别部分而不使用边界框/部分注释。此外,定量评估表明,PA-CNN在三个具有挑战性的细粒度识别任务中产生最先进的性能。即,Cub-2000-2011,FGVC飞机和斯坦福汽车。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号