首页> 外文期刊>IEEE Transactions on Image Processing >A Grassmannian Graph Approach to Affine Invariant Feature Matching
【24h】

A Grassmannian Graph Approach to Affine Invariant Feature Matching

机译:仿射不变特征匹配的基层图形方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present a novel, theoretical approach to address one of the longstanding problems in computer vision: 2D and 3D affine invariant feature matching. Our proposed Grassmannian Graph (GrassGraph) framework employs a two stage procedure that is capable of robustly recovering correspondences between two unorganized, affinely related feature (point) sets. In the ideal case, the first stage maps the feature sets to an affine invariant Grassmannian representation, where the features are mapped into the same subspace. It turns out that coordinate representations extracted from the Grassmannian differ by an arbitrary orthonormal matrix. In the second stage, by approximating the Laplace-Beltrami operator (LBO) on these coordinates, this extra orthonormal factor is nullified, providing true affine invariant coordinates which we then utilize to recover correspondences via simple mutual nearest neighbor relations. Our validation benchmarks use large number of experimental trials performed on 2D and 3D datasets. Experimental results show that the proposed Grass-Graph method successfully recovers large affine transformations.
机译:在这项工作中,我们提出了一种新颖的理论方法来解决计算机愿景中的长期问题之一:2D和3D仿射不变特征匹配。我们所提出的Grashmannian图(草图)框架(GrassGraph)框架采用了两阶段程序,该过程能够强大地恢复两个无组织,束缚相关特征(Point)集之间的对应关系。在理想情况下,第一阶段将功能集映射到仿射不变的Gransmannian表示,其中功能映射到同一子空间。事实证明,从基层中提取的坐标表示因任意正常的矩阵而异。在第二阶段,通过近似Laplace-Beltrami运算符(LBO)在这些坐标上,这种额外的正交因子是无效的,提供真正的仿射不变坐标,然后我们通过简单的相互最近邻关系来利用来恢复对应关系。我们的验证基准使用大量在2D和3D数据集上执行的实验试验。实验结果表明,建议的草图方法成功恢复了大型仿射变换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号