首页> 外文期刊>IEEE Transactions on Image Processing >A Deep Learning Reconstruction Framework for Differential Phase-Contrast Computed Tomography With Incomplete Data
【24h】

A Deep Learning Reconstruction Framework for Differential Phase-Contrast Computed Tomography With Incomplete Data

机译:具有不完整数据的差分相位对比计算机断层扫描的深度学习重建框架

获取原文
获取原文并翻译 | 示例

摘要

Differential phase-contrast computed tomography (DPC-CT) is a powerful analysis tool for soft-tissue and low-atomic-number samples. Limited by the implementation conditions, DPC-CT with incomplete projections happens quite often. Conventional reconstruction algorithms face difficulty when given incomplete data. They usually involve complicated parameter selection operations, which are also sensitive to noise and are time-consuming. In this paper, we report a new deep learning reconstruction framework for incomplete data DPC-CT. It involves the tight coupling of the deep learning neural network and DPC-CT reconstruction algorithm in the domain of DPC projection sinograms. The estimated result is not an artifact caused by the incomplete data, but a complete phase-contrast projection sinogram. After training, this framework is determined and can be used to reconstruct the final DPC-CT images for a given incomplete projection sinogram. Taking the sparse-view, limited-view and missing-view DPC-CT as examples, this framework is validated and demonstrated with synthetic and experimental data sets. Compared with other methods, our framework can achieve the best imaging quality at a faster speed and with fewer parameters. This work supports the application of the state-of-the-art deep learning theory in the field of DPC-CT.
机译:差分相位对比计算机断层扫描(DPC-CT)是软组织和低原子数样本的强大分析工具。由实施条件有限,具有不完全投影的DPC-CT经常发生。传统的重建算法在给定不完整的数据时面临困难。它们通常涉及复杂的参数选择操作,这对噪声也敏感,并且是耗时的。在本文中,我们为不完整数据DPC-CT报告了一个新的深度学习重建框架。它涉及DPC投影域的深度学习神经网络和DPC-CT重建算法的紧密耦合。估计结果不是由不完整数据引起的伪像,而是一个完整的相位对比度投影库。在训练之后,确定该框架并可用于重建给定不完整投影的最终DPC-CT图像。采用稀疏视图,有限视图和缺失的DPC-CT作为示例,验证了该框架并用合成和实验数据集进行了验证。与其他方法相比,我们的框架可以以更快的速度和更少的参数来实现最佳的成像质量。这项工作支持在DPC-CT领域中的应用最先进的深度学习理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号