首页> 外文期刊>IEEE Transactions on Image Processing >Bi-Directional Dermoscopic Feature Learning and Multi-Scale Consistent Decision Fusion for Skin Lesion Segmentation
【24h】

Bi-Directional Dermoscopic Feature Learning and Multi-Scale Consistent Decision Fusion for Skin Lesion Segmentation

机译:双向DERMISCOPIC特征学习和多尺度一致决策融合,用于皮肤病变分割

获取原文
获取原文并翻译 | 示例

摘要

Accurate segmentation of skin lesion from dermoscopic images is a crucial part of computer-aided diagnosis of melanoma. It is challenging due to the fact that dermoscopic images from different patients have non-negligible lesion variation, which causes difficulties in anatomical structure learning and consistent skin lesion delineation. In this paper, we propose a novel bi-directional dermoscopic feature learning (biDFL) framework to model the complex correlation between skin lesions and their informative context. By controlling feature information passing through two complementary directions, a substantially rich and discriminative feature representation is achieved. Specifically, we place biDFL module on the top of a CNN network to enhance high-level parsing performance. Furthermore, we propose a multi-scale consistent decision fusion (mCDF) that is capable of selectively focusing on the informative decisions generated from multiple classification layers. By analysis of the consistency of the decision at each position, mCDF automatically adjusts the reliability of decisions and thus allows a more insightful skin lesion delineation. The comprehensive experimental results show the effectiveness of the proposed method on skin lesion segmentation, achieving state-of-the-art performance consistently on two publicly available dermoscopic image databases.
机译:从Dermoscopic图像中精确分割皮肤病,是黑色素瘤的计算机辅助诊断的重要组成部分。由于来自不同患者的Dermospic图像具有不可忽略的病变变异,这是挑战性的,这导致解剖结构学习和一致的皮肤病变描绘困难。在本文中,我们提出了一种新型双向DERMISCOPIC特征学习(BIDFL)框架,以模拟皮肤病变之间的复杂相关性及其信息性背景。通过控制通过两个互补方向的特征信息,实现了基本上丰富的辨别特征表示。具体而言,我们将BIDFL模块放在CNN网络顶部,以提高高级解析性能。此外,我们提出了一种多尺度一致的决策融合(MCDF),其能够选择性地关注从多个分类层产生的信息决策。通过分析每个位置决定的一致性,MCDF自动调整决策的可靠性,从而允许更富有洞察力的皮肤病变描绘。综合实验结果表明了提出的方法对皮肤病变分割的有效性,在两个公共可用的DerMicopic图像数据库上始终如一地实现最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号