首页> 外文期刊>IEEE Transactions on Image Processing >HAR-Net: Joint Learning of Hybrid Attention for Single-Stage Object Detection
【24h】

HAR-Net: Joint Learning of Hybrid Attention for Single-Stage Object Detection

机译:HAR-NET:联合学习单阶段物体检测的混合注意力

获取原文
获取原文并翻译 | 示例

摘要

Object detection has been a challenging task in computer vision. Although significant progress has been made in object detection with deep neural networks, the attention mechanism has yet to be fully developed. In this paper, we propose a hybrid attention mechanism for single-stage object detection. First, we present the modules of spatial attention, channel attention and aligned attention for single-stage object detection. In particular, dilated convolution layers with symmetrically fixed rates are stacked to learn spatial attention. A channel attention mechanism with the cross-level group normalization and squeeze-and-excitation operation is proposed. Aligned attention is constructed with organized deformable filters. Second, the three types of attention are unified to construct the hybrid attention mechanism. We then plug the hybrid attention into Retina-Net and propose the efficient single-stage HAR-Net for object detection. The attention modules and the proposed HAR-Net are evaluated on the COCO detection dataset. The experiments demonstrate that hybrid attention can significantly improve the detection accuracy and that the HAR-Net can achieve a state-of-the-art 45.8 mAP, thus outperforming existing single-stage object detectors.
机译:对象检测在计算机视觉中是一个具有挑战性的任务。虽然具有深度神经网络的物体检测中取得了重大进展,但注意机制尚未完全开发。在本文中,我们提出了一种用于单阶段物体检测的混合注意机制。首先,我们介绍了空间关注的模块,通道关注并对准单级对象检测。特别地,堆叠具有对称固定速率的扩张卷积层以学习空间注意。提出了具有交叉级别组归一化和挤压和激励操作的通道注意机制。用有组织可变形过滤器构建对齐的注意力。其次,三种类型的注意力统一构建混合注意力机制。然后,我们将混合注意力插入视网膜网,并提出有效的单级HAR网进行物体检测。在COCO检测数据集上评估注意模块和所提出的HAR-NET。实验表明,混合注意力可以显着提高检测精度,并且HAR-NET可以实现最先进的45.8地图,从而优化现有的单级对象检测器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号