首页> 外文期刊>IEEE Transactions on Image Processing >Arbitrarily Shaped Scene Text Detection With a Mask Tightness Text Detector
【24h】

Arbitrarily Shaped Scene Text Detection With a Mask Tightness Text Detector

机译:任意形状的场景文本检测与掩模密封性文本检测器

获取原文
获取原文并翻译 | 示例

摘要

Scene text in the environment is complicated. It can exist in arbitrary text fonts, sizes or shapes. Although scene text detection has witnessed considerable progress in recent years, the detection of text with complex shapes, especially curved text, remains challenging. Datasets with adequate samples to overcome the problem presented by curved text (or other irregularly shaped text) have been introduced only recently; however, the performance of the reported methods on these datasets is unsatisfactory. Therefore, detecting arbitrarily shaped text remains a challenging. This motivated us to propose the Mask Tightness Text Detector (Mask TTD) to improve text detection performance. Mask TTD uses a tightness prior and text frontier learning to enhance pixel-wise mask prediction. In addition, it achieves mutual promotion by integrating a branch for the polygonal boundary of each text region, which significantly improves the detection performance of arbitrarily shaped text. Experiments demonstrate that Mask TTD can achieve state-of-the-art performance on existing curved text datasets (CTW1500, Total-text, and CUTE80) and three common benchmark datasets (RCTW-17, MSRA-TD500, and ICDAR 2015). It is worth mentioning that on CTW1500, our method can outperform previous methods, especially at higher intersection over union (IoU) thresholds (16 higher than the next-best method with an IoU threshold of 0.8), which demonstrates its potential for tight text detection. Moreover, on the largest Chinese-based dataset RCTW-17, Mask TTD outperforms other methods by a large margin in terms of both the Average Precision and F-measure, showing its powerful generalization ability.
机译:环境中的场景文本很复杂。它可以以任意文本字体,大小或形状存在。虽然近年来,场景文本检测已经见证了相当大的进展,但是检测具有复杂形状,尤其是弯曲文本的文本仍然具有挑战性。最近仅引入了具有足够样本的数据集以克服曲线文本(或其他不规则形式的文本)所呈现的问题;但是,报告的这些数据集上报告的方法的性能尚不令人满意。因此,检测任意形状的文本仍然是一个具有挑战性的。这激励我们提出掩模密封性文本检测器(掩模TTD)以提高文本检测性能。掩模TTD使用紧密性和文本前沿学习,以增强像素 - 明智的掩模预测。此外,它通过对每个文本区域的多边形边界集成分支来实现相互促销,这显着提高了任意形状的文本的检测性能。实验表明,掩模TTD可以在现有曲线数据集(CTW1500,Total-Text和Cute80)和三个公共基准数据集(RCTW-17,MSRA-TD500和ICDAR 2015)上实现最先进的性能。值得一提的是,在CTW1500上,我们的方法可以胜过以前的方法,特别是在与联盟(IOO)阈值上更高的交叉点(16比下一个最佳方法为0.8),这证明了其紧密文本检测的可能性。此外,在最大的基于中文基数据集RCTW-17上,掩模TTD在平均精度和F测量方面,通过大的余量优于其他方法,显示其强大的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号