机译:人员重新识别的零件损失深度代表学习
Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100190 Peoples R China;
Peking Univ Sch Elect Engn & Comp Sci Beijing 100871 Peoples R China;
Univ Technol Dept Comp Sci & Technol Hefei 230009 Anhui Peoples R China;
Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc Beijing 100190 Peoples R China;
Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100190 Peoples R China|Univ Chinese Acad Sci Dept Artificial Intelligence Beijing 100049 Peoples R China;
Univ Texas San Antonio Dept Comp Sci San Antonio TX 78249 USA;
Person re-identification; representation learning; part lass networks; convolutional neural networks;
机译:基于标签间隔扩展损失和人员重新识别的群体损失深度联想的两级表达
机译:具有部分损失的深度表示学习,用于人员重新识别
机译:强大的联合学习网络:改进的深度表示学习,用于人员重新识别
机译:通过深入学习多损分的人重新识别
机译:使用排序学习的监督学习对深人进行重新识别
机译:基于深哈希学习的大型人重新识别
机译:学习分辨率 - 不变性的人重新识别