首页> 外文期刊>IEEE Transactions on Image Processing >Deep Group-Wise Fully Convolutional Network for Co-Saliency Detection With Graph Propagation
【24h】

Deep Group-Wise Fully Convolutional Network for Co-Saliency Detection With Graph Propagation

机译:具有图传播的协同显着性检测的深群智全卷积网络

获取原文
获取原文并翻译 | 示例

摘要

A key problem in co-saliency detection is how to effectively model the interactive relationship of a whole image group and the individual perspective of each image in a united data-driven manner. In this paper, we propose a group-wise deep co-saliency detection approach to address the co-saliency object discovery problem based on the fully convolutional network (FCN). The proposed approach captures the group-wise interaction information for group images by learning a semantics-aware image representation based on a convolutional neural network, which adaptively learns the group-wise features for co-saliency detection. Furthermore, the proposed approach discovers the collaborative and interactive relationships between group-wise feature representation and single-image individual feature representation and models this in a collaborative learning framework. Then, we set up a unified deep learning scheme to jointly optimize the process of group-wise feature representation learning and collaborative learning, leading to more reliable and robust co-saliency detection results. Finally, we present a graph Laplacian regularized nonlinear regression model for saliency refinement. The experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.
机译:共同显着性检测中的关键问题是如何以统一的数据驱动方式有效地对整个图像组与每个图像的单个视角的交互关系进行建模。在本文中,我们提出了一种基于组的深度共显着性检测方法,以解决基于完全卷积网络(FCN)的共显性对象发现问题。所提出的方法通过学习基于卷积神经网络的语义感知图像表示来捕获组图像的逐组交互信息,卷积神经网络自适应地学习用于共显着性检测的逐组特征。此外,提出的方法发现了逐组特征表示和单幅图像单个特征表示之间的协作和交互关系,并在协作学习框架中对此进行了建模。然后,我们建立了统一的深度学习方案,以共同优化基于群体的特征表示学习和协作学习的过程,从而获得更可靠,更强大的共显着性检测结果。最后,我们提出了一个图拉普拉斯正则化非线性回归模型以进行显着性细化。实验结果证明了我们的方法与最新技术方法相比的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号