首页> 外文期刊>IEEE Transactions on Image Processing >Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein’s Unbiased Risk Estimator
【24h】

Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein’s Unbiased Risk Estimator

机译:基于非局部贝叶斯奇异值阈值和斯坦因无偏风险估计器的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

Singular value thresholding (SVT)- or nuclear norm minimization (NNM)-based nonlocal image denoising methods often rely on the precise estimation of the noise variance. However, most existing methods either assume that the noise variance is known or require an extra step to estimate it. Under the iterative regularization framework, the error in the noise variance estimate propagates and accumulates with each iteration, ultimately degrading the overall denoising performance. In addition, the essence of these methods is still least squares estimation, which can cause a very high mean-squared error (MSE) and is inadequate for handling missing data or outliers. In order to address these deficiencies, we present a hybrid denoising model based on variational Bayesian inference and Stein's unbiased risk estimator (SURE), which consists of two complementary steps. In the first step, the variational Bayesian SVT performs a low-rank approximation of the nonlocal image patch matrix to simultaneously remove the noise and estimate the noise variance. In the second step, we modify the conventional SURE full-rank SVT and its divergence formulas for rank-reduced eigen-triplets to remove the residual artifacts. The proposed hybrid BSSVT method achieves better performance in recovering the true image compared with state-of-the-art methods.
机译:基于奇异值阈值(SVT)或核规范最小化(NNM)的非局部图像去噪方法通常依赖于噪声方差的精确估计。但是,大多数现有方法要么假定噪声方差已知,要么需要额外的步骤来估计它。在迭代正则化框架下,噪声方差估计中的误差随着每次迭代传播并累积,最终使总体降噪性能降级。另外,这些方法的本质仍然是最小二乘估计,这可能会导致非常高的均方误差(MSE),并且不足以处理丢失的数据或离群值。为了解决这些不足,我们提出了一种基于变分贝叶斯推断和斯坦因的无偏风险估计器(SURE)的混合降噪模型,该模型包括两个互补步骤。第一步,变分贝叶斯SVT对非局部图像补丁矩阵执行低秩近似,以同时去除噪声并估计噪声方差。在第二步中,我们修改了常规的SURE全等级SVT及其散度公式,以降低等级的本征三元组以消除残留的伪像。与最新技术相比,提出的混合BSSVT方法在恢复真实图像方面具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号