首页> 外文期刊>IEEE Transactions on Image Processing >Weighted Extreme Sparse Classifier and Local Derivative Pattern for 3D Face Recognition
【24h】

Weighted Extreme Sparse Classifier and Local Derivative Pattern for 3D Face Recognition

机译:用于3D人脸识别的加权极端稀疏分类器和局部导数模式

获取原文
获取原文并翻译 | 示例

摘要

A novel weighted hybrid classifier and a high-order, local normal derivative pattern descriptor are proposed for 3D face recognition. The local derivative pattern (LDP) captures the detailed information based on the local derivative variation in different directions. The LDP is computed on three normal maps in x-, y-, and z-directions and on different scales. The surface normal captures the orientation of a surface at each point of 3D data. More informative local shape information is extracted using the surface normal, as compared to depth. The nth-order LDP on the surface normal is proposed to encode the more detailed features from the (n-1)th-order's local derivative direction variations. An extreme learning machine (ELM)-based autoencoder, using a multilayer network structure, is employed to select more discriminant features and to provide a faster training speed. A weighted hybrid framework is proposed to handle facial challenges using a combination of the ELM and the sparse representation classifier (SRC). The advantage of speed for the ELM and the accuracy for the SRC in a weighted scheme is used to enhance the performance of the recognition system. Experimental results regarding four famous 3D face databases illustrate the generalization and effectiveness of the proposed method in terms of both computational cost and recognition accuracy.
机译:提出了一种新颖的加权混合分类器和一种高阶局部正态导数模式描述符,用于3D人脸识别。局部导数模式(LDP)基于不同方向上的局部导数变化捕获详细信息。 LDP是在x,y和z方向上的三个法线贴图上以不同比例计算的。表面法线在3D数据的每个点处捕获表面的方向。与深度相比,使用表面法线提取更多有用的局部形状信息。提出了表面法线上的n阶LDP来编码第n-1阶局部导数方向变化中的更详细特征。使用多层网络结构的基于极限学习机(ELM)的自动编码器用于选择更多区分特征并提供更快的训练速度。提出了一种加权混合框架,以结合使用ELM和稀疏表示分类器(SRC)来处理面部挑战。在加权方案中,ELM的速度和SRC的精度的优势用于增强识别系统的性能。关于四个著名的3D人脸数据库的实验结果从计算成本和识别准确性方面说明了该方法的一般性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号