首页> 外文期刊>IEEE Transactions on Image Processing >Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism
【24h】

Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism

机译:使用注意机制的CNN遮挡意识面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces that are common in the wild. In this paper, we propose a convolution neutral network (CNN) with attention mechanism (ACNN) that can perceive the occlusion regions of the face and focus on the most discriminative un-occluded regions. ACNN is an end-to-end learning framework. It combines the multiple representations from facial regions of interest (ROIs). Each representation is weighed via a proposed gate unit that computes an adaptive weight from the region itself according to the unobstructedness and importance. Considering different RoIs, we introduce two versions of ACNN: patch-based ACNN (pACNN) and global-local-based ACNN (gACNN). pACNN only pays attention to local facial patches. gACNN integrates local representations at patch-level with global representation at image-level. The proposed ACNNs are evaluated on both real and synthetic occlusions, including a self-collected facial expression dataset with real-world occlusions, the two largest in-the-wild facial expression datasets (RAF-DB and AffectNet) and their modifications with synthesized facial occlusions. Experimental results show that ACNNs improve the recognition accuracy on both the non-occluded faces and occluded faces. Visualization results demonstrate that, compared with the CNN without Gate Unit, ACNNs are capable of shifting the attention from the occluded patches to other related but unobstructed ones. ACNNs also outperform other state-of-the-art methods on several widely used in-the-lab facial expression datasets under the cross-dataset evaluation protocol.
机译:由于各种不受限制的条件,在野外进行面部表情识别具有挑战性。尽管现有的面部表情分类器在分析受约束的正面面孔方面几乎是完美的,但它们在野外常见的部分遮挡面孔上表现不佳。在本文中,我们提出了一种具有注意机制(ACNN)的卷积神经网络(CNN),该机制可以感知人脸的遮挡区域,并专注于最具区分性的非遮挡区域。 ACNN是一个端到端的学习框架。它结合了来自感兴趣的面部区域(ROI)的多种表示。每个表示通过建议的门单元进行加权,门单元根据通畅性和重要性从区域本身计算自适应权重。考虑到不同的RoI,我们引入了两个版本的ACNN:基于补丁的ACNN(pACNN)和基于全局本地的ACNN(gACNN)。 pACNN仅关注局部面部斑块。 gACNN将补丁级别的局部表示与图像级别的全局表示集成在一起。对拟议的ACNN进行了真实和合成遮挡评估,包括具有真实遮挡的自我收集的面部表情数据集,两个最大的野生面部表情数据集(RAF-DB和AffectNet)及其对合成面部表情的修改闭塞。实验结果表明,ACNNs提高了非遮挡人脸和遮挡人脸的识别精度。可视化结果表明,与不带门单元的CNN相比,ACNN能够将注意力从遮挡的斑块转移到其他相关但畅通的斑块。在跨数据集评估协议下,ACNN在几个广泛使用的实验室内面部表情数据集上也表现出其他最新技术水平。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2019年第5期|2439-2450|共12页
  • 作者单位

    Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Comp Technol, Ctr Excellence Brain Sci & Intelligence Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Facial expression recognition; occlusion; CNN with attention mechanism; gate unit;

    机译:面部表情识别;遮挡;具有注意机制的CNN;门单元;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号