首页> 外文期刊>IEEE Transactions on Image Processing >Video Super-Resolution Using Non-Simultaneous Fully Recurrent Convolutional Network
【24h】

Video Super-Resolution Using Non-Simultaneous Fully Recurrent Convolutional Network

机译:使用非同时完全循环卷积网络的视频超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Video super-resolution (SR) aims at restoring fine details and enhancing visual experience for low-resolution videos. In this paper, we propose a very deep non-simultaneous fully recurrent convolutional network for video SR. To make full use of temporal information, we employ motion compensation, very deep fully recurrent convolutional layers, and late fusion in our system. Residual connection is also employed in our recurrent structure for more accurate SR. Finally, a new model ensemble strategy is used to combine our method with a single-image SR method. Experimental results demonstrate that the proposed method is better than that of the state-of-the-art SR methods on quantitative visual quality assessment.
机译:视频超分辨率(SR)旨在还原精细细节并增强低分辨率视频的视觉体验。在本文中,我们提出了一种用于视频SR的非常深的非同时全循环卷积网络。为了充分利用时间信息,我们在系统中采用了运动补偿,非常深的完全循环卷积层和后期融合。在我们的循环结构中还采用了残余连接,以实现更准确的SR。最后,使用新的模型集成策略将我们的方法与单图像SR方法相结合。实验结果表明,该方法在定量视觉质量评估方面优于最新的SR方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号