首页> 外文期刊>IEEE Transactions on Image Processing >A Probabilistic Approach to Cross-Region Matching-Based Image Retrieval
【24h】

A Probabilistic Approach to Cross-Region Matching-Based Image Retrieval

机译:一种基于跨区域匹配的概率图像检索方法

获取原文
获取原文并翻译 | 示例

摘要

With deep convolutional features, cross-region matching (CRM) has recently shown superior performance on image retrieval. It evaluates image similarity by comparing image regions at different locations and scales, and is, therefore, more robust to geometric variance of objects. This paper first scrutinizes CRM-based image retrieval to provide a rigorous probabilistic interpretation by following the probability ranking principle. In addition to manifesting the assumptions implicitly taken by CRM, our interpretation highlights a fundamental issue hindering the performance of CRM-when comparing two image regions, CRM ignores modeling the distribution of the visual concept class associated with an image region, making the similarity comparison less precise. Taking advantage of the unprecedented representation capability of deep convolutional features, this paper proposes one approach to tackle that issue. It treats locally clustered image regions as a pseudo-labeled class sharing the same visual concept and utilizes them to model the distribution of the visual concept class associated with an image region. Both non-parametric and parametric methods are developed for this purpose, with careful probabilistic justification. Extensive experimental study on multiple benchmark data sets demonstrates the superior performance of the proposed pseudo-label approach to CRM and other comparable methods, with the maximum improvement of more than 10 percentage points over CRM.
机译:凭借深厚的卷积特征,跨区域匹配(CRM)最近在图像检索方面显示了出众的性能。它通过比较不同位置和比例下的图像区域来评估图像相似性,因此对对象的几何变化更加健壮。本文首先仔细研究了基于CRM的图像检索,以遵循概率排序原则提供严格的概率解释。除了表述CRM隐含的假设外,我们的解释还着重指出了妨碍CRM性能的根本问题-比较两个图像区域时,CRM忽略了对与图像区域相关联的视觉概念类的分布建模,从而使相似度比较少精确。利用深度卷积特征的前所未有的表示能力,本文提出了一种解决该问题的方法。它将局部聚类的图像区域视为共享相同视觉概念的伪标记类,并利用它们对与图像区域关联的视觉概念类的分布进行建模。非参数方法和参数方法都为此目的而开发,并经过仔细的概率论证。在多个基准数据集上进行的广泛实验研究表明,拟议的伪标签方法在CRM和其他可比方法中表现出色,与CRM相比,最大改进超过10个百分点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号