首页> 外文学位 >A probabilistic similarity framework for content-based image retrieval.
【24h】

A probabilistic similarity framework for content-based image retrieval.

机译:基于内容的图像检索的概率相似性框架。

获取原文
获取原文并翻译 | 示例

摘要

Content-based retrieval from image databases has become a popular research area where conventional database retrieval methods are not sufficient because they depend on exact matches of keywords and require an enormous amount of human involvement during manual annotation. Initial work on content-based retrieval focused on using low-level features like color and texture for image representation, and a geometric framework of distances in the feature space for similarity. A challenging problem in image retrieval is the fusion of information from multiple features and similarity measures. In this dissertation, we pose the retrieval problem in a probabilistic framework where the goal is to minimize the classification error in a setting of two classes; the relevance and irrelevance classes of the query. We propose effective solutions to different levels of the retrieval process within this framework. Feature extraction and normalization is done by maximizing class separability, similarity is measured using likelihood and posterior ratios, and post-processing is done using graph-theoretic image grouping and a Bayesian relevance feedback architecture. A key aspect of our framework is a two-level modeling of probability. The first level uses parametric density models to compute class-conditional probabilities from feature vectors and can be interpreted as a mapping from the high-dimensional feature space to the two-dimensional probability space. The second level includes training simple linear classifiers in multiple probability spaces for multiple feature vectors and corresponds to a modeling of “probability of probability” to compensate for errors due to imperfect density modeling in the feature space. Furthermore, classifier combination rules and a naive Bayesian network effectively fuse information from multiple features and similarity models.; Performance evaluation was done using extensive experiments on three groundtruth databases including aerial, satellite, texture and stock photo images. The proposed probabilistic framework performed more robustly and significantly better than the commonly used geometric framework and two competing algorithms from the literature. We obtained 8–20% relative improvement in precision over the cases where the best feature vectors were used individually. Moreover, a few feedback iterations resulted in an average precision of more than 94% for all three databases.
机译:从图像数据库进行基于内容的检索已成为一个流行的研究领域,在该领域,常规的数据库检索方法还远远不够,因为它们依赖于关键字的精确匹配,并且在人工注释过程中需要大量的人工参与。基于内容的检索的初始工作着重于使用低级特征(例如颜色和纹理)来表示图像,以及使用特征空间中距离的几何框架来实现相似性。图像检索中的一个难题是融合来自多个特征和相似性度量的信息。在本文中,我们将检索问题置于一个概率框架中,该框架的目标是在两个类别的情况下将分类错误最小化。查询的相关性和不相关性类。我们在此框架内针对不同级别的检索过程提出了有效的解决方案。通过最大化类的可分离性来完成特征提取和归一化,使用似然比和后验比测量相似度,并使用图论图像分组和贝叶斯相关性反馈体系结构进行后处理。我们框架的一个关键方面是概率的两级建模。第一级使用参数密度模型从特征向量计算类条件概率,并且可以解释为从高维特征空间到二维概率空间的映射。第二级包括针对多个特征向量在多个概率空间中训练简单线性分类器,并且对应于“概率概率”模型,以补偿由于特征空间中密度模型不完善而导致的错误。此外,分类器组合规则和朴素的贝叶斯网络有效融合了来自多个特征和相似性模型的信息。性能评估是通过对三个地面数据数据库(包括航空,卫星,纹理和股票照片图像)进行的广泛实验完成的。与常用的几何框架和文献中的两种竞争算法相比,所提出的概率框架表现得更加稳健和明显更好。在单独使用最佳特征向量的情况下,我们获得了8-20%的相对精度提高。此外,一些反馈迭代导致所有三个数据库的平均精度都超过94%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号