首页> 外文期刊>IEEE Transactions on Image Processing >An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing
【24h】

An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing

机译:增强线性混合模型以解决高光谱解混的光谱变异性

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral imagery collected from airborne or satellite sources inevitably suffers from spectral variability, making it difficult for spectral unmixing to accurately estimate abundance maps. The classical unmixing model, the linear mixing model (LMM), generally fails to handle this sticky issue effectively. To this end, we propose a novel spectral mixture model, called the augmented LMM, to address spectral variability by applying a data-driven learning strategy in inverse problems of hyperspectral unmixing. The proposed approach models the main spectral variability (i.e., scaling factors) generated by variations in illumination or typography separately by means of the endmember dictionary. It then models other spectral variabilities caused by environmental conditions (e.g., local temperature and humidity and atmospheric effects) and instrumental configurations (e.g., sensor noise), and material nonlinear mixing effects, by introducing a spectral variability dictionary. To effectively run the data-driven learning strategy, we also propose a reasonable prior knowledge for the spectral variability dictionary, whose atoms are assumed to be low-coherent with spectral signatures of endmembers, which leads to a well-known low-coherence dictionary learning problem. Thus, a dictionary learning technique is embedded in the framework of spectral unmixing so that the algorithm can learn the spectral variability dictionary and estimate the abundance maps simultaneously. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with the previous state-of-the-art methods.
机译:从机载或卫星源收集的高光谱图像不可避免地会遭受光谱可变性的困扰,这使得光谱分解难以准确估计丰度图。传统的分解模型,即线性混合模型(LMM),通常无法有效地解决此粘性问题。为此,我们提出了一种新的光谱混合模型,称为增强LMM,通过在超光谱解混反问题中应用数据驱动的学习策略来解决光谱可变性。所提出的方法对通过终端构件字典分别由照明或印刷术的变化产生的主要光谱可变性(即比例因子)进行建模。然后,通过引入光谱变异性字典,对由环境条件(例如局部温度和湿度以及大气效应)和仪器配置(例如传感器噪声)以及材料非线性混合效应引起的其他光谱变异建模。为了有效地运行数据驱动的学习策略,我们还提出了有关光谱可变性字典的合理先验知识,假定原子的原子与端成员的光谱特征是低相干的,这导致了众所周知的低相干字典学习问题。因此,在频谱分解的框架中嵌入了字典学习技术,以便该算法可以学习频谱变异性字典并同时估计丰度图。在合成和真实数据集上进行了广泛的实验,以证明与以前的最新方法相比,该方法的优越性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号