首页> 外文期刊>IEEE Transactions on Image Processing >Image Inpainting Using Nonlocal Texture Matching and Nonlinear Filtering
【24h】

Image Inpainting Using Nonlocal Texture Matching and Nonlinear Filtering

机译:使用非局部纹理匹配和非线性滤波的图像修复

获取原文
获取原文并翻译 | 示例

摘要

Nonlocal texture similarity and local intensity smoothness are both essential for solving most image inpainting problems. In this paper, we propose a novel image inpainting algorithm that is capable of reproducing the underlying textural details using a nonlocal texture measure and also smoothing pixel intensity seamlessly in order to achieve natural-looking inpainted images. For matching texture, we propose a Gaussian-weighted nonlocal texture similarity measure to obtain multiple candidate patches for each target patch. To compute the pixel intensity, we apply the$lpha $-trimmed mean filter to the candidate patches to inpaint the target patch pixel-by-pixel. The proposed algorithm is compared with four current image inpainting algorithms under different scenarios, including object removal, texture synthesis, and error concealment. Experimental results show that the proposed algorithm outperforms the existing algorithms when inpainting large missing regions in images with texture and geometric structures.
机译:非局部纹理相似性和局部强度平滑度对于解决大多数图像修复问题都是必不可少的。在本文中,我们提出了一种新颖的图像修复算法,该算法能够使用非局部纹理度量来再现基础纹理细节,并且还可以无缝平滑像素强度以实现看起来自然的修复图像。为了匹配纹理,我们提出了一种高斯加权的非局部纹理相似性度量,以获得每个目标补丁的多个候选补丁。要计算像素强度,我们应用 n $ alpha $ n-trimmed平均滤波器到候选补丁,以逐像素地修补目标补丁。将该算法与当前四种在不同场景下的图像修复算法进行了比较,包括对象去除,纹理合成和错误隐藏。实验结果表明,在具有纹理和几何结构的图像中修复较大的缺失区域时,该算法优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号