首页> 外文期刊>IEEE Transactions on Image Processing >Moving Object Detection in Video via Hierarchical Modeling and Alternating Optimization
【24h】

Moving Object Detection in Video via Hierarchical Modeling and Alternating Optimization

机译:通过分层建模和交替优化检测视频中的运动目标

获取原文
获取原文并翻译 | 示例

摘要

In conventional wisdom of video modeling, the background is often treated as the primary target and foreground is derived using the technique of background subtraction. Based on the observation that foreground and background are two sides of the same coin, we propose to treat them as peer unknown variables and formulate a joint estimation problem, calledHierarchical modelingandAlternating Optimization(HMAO). The motivation behind ourhierarchicalextensions of background and foreground models is to better incorporate a priori knowledge about thedisparitybetween background and foreground. For background, we decompose it into temporally low-frequency and high-frequency components for the purpose of better characterizing the class of video with dynamic background; for foreground, we construct a Markov random field prior at a spatially low resolution as the pivot to facilitate the noise-resilient refinement at higher resolutions. Built on hierarchical extensions of both models, we show how to successively refine their joint estimates under a unified framework known as alternating direction multipliers method. Experimental results have shown that our approach produces more discriminative background and demonstrates better robustness to noise than other competing methods. When compared against current state-of-the-art techniques, HMAO achieves at least comparable and often superior performance in terms of F-measure scores, especially for video containing dynamic and complex background.
机译:在视频建模的传统知识中,通常将背景视为主要目标,并使用背景减法技术推导出前景。基于观察到前景和背景是同一枚硬币的两面,我们建议将它们视为对等未知变量,并提出一个联合估计问题,称为 n 分层建模 nand n <斜体xmlns:mml = ” http://www.w3.org/1998/Math/MathML “ xmlns:xlink = ” http://www.w3.org/1999/xlink “>替代优化 n(HMAO) 。 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org/1999/xlink背后的动机“>背景模型和前景模型的扩展是为了更好地结合有关 n 背景与前景之间的差异 n。对于背景,我们将其分解为时间上的低频和高频分量,以更好地表征具有动态背景的视频类别。对于前景,我们在空间较低的分辨率之前构造一个马尔可夫随机场作为支点,以促进在高分辨率下的抗噪性细化。基于这两个模型的层次扩展,我们展示了如何在称为交替方向乘数方法的统一框架下,逐步完善其联合估计。实验结果表明,与其他竞争方法相比,我们的方法产生了更高的判别性背景,并表现出更好的抗噪声能力。与当前的最新技术相比,HMAO在F量度得分方面至少达到了可比的,并且通常是更好的性能,特别是对于包含动态和复杂背景的视频。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号