首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Error Bounded Foreground and Background Modeling for Moving Object Detection in Satellite Videos
【24h】

Error Bounded Foreground and Background Modeling for Moving Object Detection in Satellite Videos

机译:卫星视频中移动对象检测的错误界限前景和背景建模

获取原文
获取原文并翻译 | 示例

摘要

Detecting moving objects from ground-based videos is commonly achieved by using background subtraction (BS) techniques. Low-rank matrix decomposition inspires a set of state-of-the-art approaches for this task. It is integrated with structured sparsity regularization to achieve BS in the developed method of low-rank and structured sparse decomposition (LSD). However, when this method is applied to satellite videos where spatial resolution is poor and targets & x2019; contrast to the background is low, its performance is limited as the data no longer fit adequately either the foreground structure or the background model. In this article, we handle these unexplained data explicitly and address the moving target detection from space as one of the pioneering studies. We propose a new technique by extending the decomposition formulation with bounded errors, named Extended LSD (E-LSD). This formulation integrates low-rank background, structured sparse foreground, as well as their residuals in a matrix decomposition problem. Solving this optimization problem is challenging. We provide an effective solution by introducing an alternative treatment and adopting the direct extension of alternating direction method of multipliers (ADMM). The proposed E-LSD was validated on two satellite videos, and the experimental results demonstrate the improvement in background modeling with boosted moving object detection precision over state-of-the-art methods.
机译:通过使用背景减法(BS)技术,通常实现从地面视频中检测移动物体。低级矩阵分解激发了一组用于此任务的最先进的方法。它与结构化稀疏正则化集成,以实现BS的低级和结构稀疏分解(LSD)的开发方法。但是,当该方法应用于空间分辨率差和目标的卫星视频时,&x2019;与背景的对比度很低,其性能受到限制,因为数据不再适合前景结构或背景模型。在本文中,我们明确地处理这些无法解释的数据,并将移动目标检测从空间视为开拓性研究之一。我们通过将分解配方扩展具有界限误差,命名为扩展LSD(E-LSD)来提出新技术。该制剂在矩阵分解问题中集成了低级背景,结构稀疏的前景,以及它们的残差。解决这个优化问题是具有挑战性的。我们通过引入替代处理和采用乘数(ADMM)的交替方向方法的直接延伸来提供有效的解决方案。在两个卫星视频上验证了所提出的E-LSD,实验结果表明,通过最先进的方法提高了移动物体检测精度的背景建模的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号