首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
【24h】

Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions

机译:在未知光照和大气条件下获取的高光谱图像中自动进行材料识别的模型和方法

获取原文
获取原文并翻译 | 示例

摘要

The spectral radiance measured by an airborne imaging spectrometer for a material on the Earth's surface depends strongly on the illumination incident of the material and the atmospheric conditions. This dependence has limited the success of material-identification algorithms that rely on hyperspectral image data without associated ground-truth information. In this paper, the authors use a comprehensive physical model to show that the set of observed 0.4-2.5 /spl mu/m spectral-radiance vectors for a material lies in a low-dimensional subspace of the hyperspectral-measurement space. The physical model captures the dependence of the reflected sunlight, reflected skylight, and path-radiance terms on the scene geometry and on the distribution of atmospheric gases and aerosols over a wide range of conditions. Using the subspace model, they develop a local maximum-likelihood algorithm for automated material identification that is invariant to illumination, atmospheric conditions, and the scene geometry. The algorithm requires only the spectral reflectance of the target material as input. The authors show that the low dimensionality of material subspaces allows for the robust discrimination of a large number of materials over a wide range of conditions. They demonstrate the invariant algorithm for the automated identification of material samples in HYDICE imagery acquired under different illumination and atmospheric conditions.
机译:由机载成像光谱仪测量的地球表面材料的光谱辐射率在很大程度上取决于材料的照明入射和大气条件。这种依赖性限制了依靠高光谱图像数据而没有相关的真实信息的材料识别算法的成功。在本文中,作者使用一个综合的物理模型来表明,所观察到的材料的0.4-2.5 / spl mu / m光谱辐射向量集位于高光谱测量空间的低维子空间中。物理模型捕获了反射的阳光,反射的天窗以及路径辐射项对场景几何形状以及在各种条件下大气和气溶胶的分布的依赖性。他们使用子空间模型开发了局部最大似然算法,用于自动识别材质,该算法不会因光照,大气条件和场景几何形状而变化。该算法仅需要目标材料的光谱反射率作为输入。作者表明,材料子空间的维数较低,因此可以在很宽的条件范围内对大量材料进行可靠的区分。他们展示了用于在不同光照和大气条件下获取的HYDICE图像中的材料样本进行自动识别的不变算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号