首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Boundary conditions and fast algorithms for surface reconstructions from synthetic aperture radar data
【24h】

Boundary conditions and fast algorithms for surface reconstructions from synthetic aperture radar data

机译:利用合成孔径雷达数据重建表面的边界条件和快速算法

获取原文
获取原文并翻译 | 示例

摘要

Most attempts to determine surface height from noiseless synthetic aperture radar (SAR) data involve approximating the surface by solving a related standard shape from shading (SFS) problem. Through analysis of the underlying partial differential equations for both the original SAR problem and the approximating standard SFS problem, the authors demonstrate significant differences between them. For example, if it is known that the surface is smooth, the standard SPS problem can generally be uniquely solved from knowledge of the height and concavity at one surface point, whereas for SAR, multiple valid solutions will generally exist unless height information is specified along entire curves on the surface (i.e., boundary conditions). Unlike the standard SFS approximation, the underlying SAR equation can be reexpressed as a time-dependent Hamilton-Jacobi equation. This transformation allows the authors to compute the correct surface topography from noiseless SAR data with boundary conditions extremely quickly. Finally, they consider the effect of radar noise on the computed surface reconstruction and discuss the ability of the presented PDE method to quickly compute an initial surface that will significantly cut the computational time needed by cost minimization algorithms to approximate surfaces from noisy radar data.
机译:从无噪声合成孔径雷达(SAR)数据确定表面高度的大多数尝试都涉及通过解决相关的标准阴影形状(SFS)问题来近似表面。通过分析原始SAR问题和近似标准SFS问题的基本偏微分方程,作者证明了它们之间的显着差异。例如,如果已知表面是光滑的,则通常可以从一个表面点的高度和凹度的知识唯一地解决标准的SPS问题,而对于SAR,除非沿以下方向指定高度信息,否则通常将存在多个有效解决方案表面上的整个曲线(即边界条件)。与标准SFS近似不同,可以将基础SAR方程重新表达为与时间相关的Hamilton-Jacobi方程。通过这种转换,作者可以非常快速地从具有边界条件的无噪声SAR数据中计算出正确的表面形貌。最后,他们考虑了雷达噪声对计算出的曲面重建的影响,并讨论了所提出的PDE方法快速计算初始曲面的能力,这将大大减少成本最小化算法从嘈杂的雷达数据近似曲面所需的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号