首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework
【24h】

Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework

机译:基于小波特征的遥感图像分割及其在软计算框架中的评估

获取原文
获取原文并翻译 | 示例

摘要

The present paper describes a feature extraction method based on M-band wavelet packet frames for segmenting remotely sensed images. These wavelet features are then evaluated and selected using an efficient neurofuzzy algorithm. Both the feature extraction and neurofuzzy feature evaluation methods are unsupervised, and they do not require the knowledge of the number and distribution of classes corresponding to various land covers in remotely sensed images. The effectiveness of the methodology is demonstrated on two four-band Indian Remote Sensing 1A satellite (IRS-1A) images containing five to six overlapping classes and a three-band SPOT image containing seven overlapping classes.
机译:本文描述了一种基于M波段小波包帧的特征提取方法,用于分割遥感图像。这些小波特征然后使用有效的神经模糊算法进行评估和选择。特征提取和神经模糊特征评估方法均不受监督,并且不需要了解遥感图像中与各种土地覆被相对应的类别的数量和分布。该方法的有效性在包含五到六个重叠类别的两个四波段印度遥感1A卫星(IRS-1A)图像和包含七个重叠类别的三波段SPOT图像上得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号